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Moving Objects Problem

• Given

• N  moving objects, e.g., cars, planes, bees, 
particles, ...

• space: 2D or 3D geometric

• Desired results: 

• moving objects within a range (query window)

• as of now

• or: in not too distant future
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Why External Memory?
• 1st common assumption in existing work: 

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current 
position and speed vector plus 4 bytes ID

• => 20 bytes per moving object

• => 54 million moving objects per GB

• and this is ignoring compression...

• realistic: 100 million moving objects per GB
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Why External Memory?
• current server hardware has at least 4 GB

(we would call this a very small machine...)

• 16GB main memory more common

• => 800 million moving objects in main memory
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Example: infosys server
• one Server node X has:

• Quad Core Xeon E5430, 2*6MB Cache, 
2.66GHz

• 16 GB Main Memory

• 6 * 750 GB SATA, 7.2 rpm

• 10*X = 29k € = 0.58 man years

• in total:160 GB main memory

• => 8 billion moving objects in main memory

5 Motivation > MOVIES > Experiments
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Clouds/Farms/Grids
• thousands of nodes 

• Google, Yahoo, etc.

• clouds, map/reduce

• => hundreds of billions of moving objects in 
main memory

6 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

• therefore: maintain index

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

• maaannnyyy tricks to improve this

7 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work: 

„maintain index for incoming updates“

• reason: cost to create an index from scratch 
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

• maaannnyyy tricks to improve this

• but no real solution
7 Motivation > MOVIES > Experiments
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Movies Analogy
• moving picture capturing

• => so far technically impossible!

• movie camera shoots series of still images

• cinema shows series of still images

• inertia of human eye

• => human brain is tricked into believing that 
it sees a continuous movement
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Movies Algorithm
• moving index capturing

• =>so far not done!

• indexer shoots a quick series of still indexes

• query processor shows series of still 
indexes

• inertia of object movement

• => applications are tricked into believing that 
they see a continuous movement
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(c) represented in compressed array
	
 	
 	
 	
 (or any other bulk-loaded tree structure)

(b) mapped to any space-filling curve
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(a) log-buffer

OID x y sv timestamp
5 3 1 11 15:23:12:000
3 2 4 3 15:23:12:001
2 5 1 11 15:23:12:002
4 4 5 5 15:23:12:003
3 9 8 2 15:23:12:004
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(a) log-buffer

OID x y sv timestamp
5 3 1 11 15:23:12:000
3 2 4 3 15:23:12:001
2 5 1 11 15:23:12:002
4 4 5 5 15:23:12:003
3 9 8 2 15:23:12:004
1 1 5 6 15:23:12:005
5 4 3 10 15:23:12:006
4 4 2 6 15:23:12:006
2 6 1 12 15:23:12:008
3 3 4 3 15:23:12:008
5 5 4 9 15:23:12:008
1 2 5 5 15:23:12:010

→

(b) aggregation buffer

OID x y sv timestamp
1 2 5 5 15:23:12:010
2 6 1 12 15:23:12:008
3 3 4 3 15:23:12:008
4 4 2 6 15:23:12:006
5 5 4 9 15:23:12:008

→

(b) Aggregated MOVIES:

• keep most recent key for object

• cons: latency for insert

• pros: smaller
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Staleness
• results delivered by a query may be slightly 

stale (=out-of-date)

• assume current frame is F45

• a result returned by index I44 may have 
been updated already, but...

• ...is currently used to build a new index
=> result will become available in F46

• ...is collected in current update buffer
=> result will become available in F47

• Staleness ≤ 2∗tPhase Time

15 Motivation > MOVIES > Experiments
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NPI MOVIES
• =non-predictive indexing strategy

• index contains objects valid at different 
times

• cons: larger query rewrite

• cons: timestamps need to be stored

• pros: less CPU intensive as incoming 
updates do not need to be translated
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Experiments
• largest road network ever used in 

experiments

• up to 100 million moving objects

• 6 nodes: each 2 ∗ Dual Core AMD Opteron 
at 2.4 GHz and 6GB main memory

• 2 nodes used as data generators

• up to 4 nodes used to index/query data

18 Motivation > MOVIES > Experiments



Jens Dittrich, Information Systems Group

Data

19

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

• had to write our 
own:
moto.sourceforge.net

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

• had to write our 
own:
moto.sourceforge.net

• build on ideas from 
Brinkhoff generator

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

• had to write our 
own:
moto.sourceforge.net

• build on ideas from 
Brinkhoff generator

• 40 million nodes

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

• had to write our 
own:
moto.sourceforge.net

• build on ideas from 
Brinkhoff generator

• 40 million nodes

• 40 million edges
Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Data

19

• existing workload 
generators did not 
scale

• had to write our 
own:
moto.sourceforge.net

• build on ideas from 
Brinkhoff generator

• 40 million nodes

• 40 million edges

• up to 100 million 
moving objects

Saarbrücken

Oldenburg



Jens Dittrich, Information Systems Group

Scalability in Index Size

 100000

 1e+06

 1e+07

 100000  1e+06  1e+07

m
ax

 u
pd

at
e 

ra
te

 [#
 u

p.
/s

ec
., 

lo
g 

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node



Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10

 100000

 1e+06

 1e+07

 100000  1e+06  1e+07

m
ax

 u
pd

at
e 

ra
te

 [#
 u

p.
/s

ec
., 

lo
g 

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node



Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10
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Scalability in Update Rate
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Shared-Nothing Scale-Out

• N=25.8M

• special network setup for shared-nothing

• up to 2Gb/s bandwidth node2node
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Scalability in Index Size
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Scalability in Index Size

• up to 55 million updates per second!
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2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main 
memory indexes

• movie camera analogy

• also similarities to data warehousing

• but: create warehouse several times per second 
to minimize staleness

• simple yet very efficient

• outperforms existing techniques by orders of 
magnitude
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Future Work
• investigate effects of staleness on quality

• other read-optimized indexes

• use cache-optimized indexes

• different merge strategies

• adaptive merge strategies based on 
workload

• MOVIES on flash

• application to general data streams

Thanks!
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