
Indexing Moving Objects using
Short-Lived Throwaway Indexes

Jens Dittrich	
 Saarland University
Lukas Blunschi	
 ETH Zurich
Marcos Antonio Vaz Salles	
 Cornell University

SSTD 2009
Aalborg
July 10

Jens Dittrich, Information Systems Group

Moving Objects Problem

2 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Moving Objects Problem

• Given

• N moving objects, e.g., cars, planes, bees,
particles, ...

• space: 2D or 3D geometric

2 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Moving Objects Problem

• Given

• N moving objects, e.g., cars, planes, bees,
particles, ...

• space: 2D or 3D geometric

• Desired results:

• moving objects within a range (query window)

• as of now

• or: in not too distant future

2 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current
position and speed vector plus 4 bytes ID

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current
position and speed vector plus 4 bytes ID

• => 20 bytes per moving object

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current
position and speed vector plus 4 bytes ID

• => 20 bytes per moving object

• => 54 million moving objects per GB

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current
position and speed vector plus 4 bytes ID

• => 20 bytes per moving object

• => 54 million moving objects per GB

• and this is ignoring compression...

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• 1st common assumption in existing work:

„data does not fit into main memory“

• but why?

• assume 4 bytes per dimension for current
position and speed vector plus 4 bytes ID

• => 20 bytes per moving object

• => 54 million moving objects per GB

• and this is ignoring compression...

• realistic: 100 million moving objects per GB

3 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?

4 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• current server hardware has at least 4 GB

(we would call this a very small machine...)

4 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• current server hardware has at least 4 GB

(we would call this a very small machine...)

• 16GB main memory more common

4 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why External Memory?
• current server hardware has at least 4 GB

(we would call this a very small machine...)

• 16GB main memory more common

• => 800 million moving objects in main memory

4 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Example: infosys server

5 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Example: infosys server
• one Server node X has:

• Quad Core Xeon E5430, 2*6MB Cache,
2.66GHz

• 16 GB Main Memory

• 6 * 750 GB SATA, 7.2 rpm

5 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Example: infosys server
• one Server node X has:

• Quad Core Xeon E5430, 2*6MB Cache,
2.66GHz

• 16 GB Main Memory

• 6 * 750 GB SATA, 7.2 rpm

• 10*X = 29k € = 0.58 man years

5 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Example: infosys server
• one Server node X has:

• Quad Core Xeon E5430, 2*6MB Cache,
2.66GHz

• 16 GB Main Memory

• 6 * 750 GB SATA, 7.2 rpm

• 10*X = 29k € = 0.58 man years

• in total:160 GB main memory

5 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Example: infosys server
• one Server node X has:

• Quad Core Xeon E5430, 2*6MB Cache,
2.66GHz

• 16 GB Main Memory

• 6 * 750 GB SATA, 7.2 rpm

• 10*X = 29k € = 0.58 man years

• in total:160 GB main memory

• => 8 billion moving objects in main memory

5 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Clouds/Farms/Grids

6 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Clouds/Farms/Grids
• thousands of nodes

6 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Clouds/Farms/Grids
• thousands of nodes

• Google, Yahoo, etc.

6 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Clouds/Farms/Grids
• thousands of nodes

• Google, Yahoo, etc.

• clouds, map/reduce

6 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Clouds/Farms/Grids
• thousands of nodes

• Google, Yahoo, etc.

• clouds, map/reduce

• => hundreds of billions of moving objects in
main memory

6 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

• therefore: maintain index

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

• maaannnyyy tricks to improve this

7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Why Update?
• 2nd common assumption in existing work:

„maintain index for incoming updates“

• reason: cost to create an index from scratch
is considered high

• therefore: maintain index

• but: index maintenance => random I/O

• random I/O => I/O bottle neck

• maaannnyyy tricks to improve this

• but no real solution
7 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group 8 Motivation > MOVIES > Experiments

But wait: how long does it take to
create an index in main memory?

Jens Dittrich, Information Systems Group

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 5 10 15 20 25 30

e
xe

cu
tio

n
 t

im
e

 [
se

c]

z-code length [2w bits]

qsort T1
qsort T4
rsort T1
rsort T4

N=6.4M
Tx AMD cores

at 2.4 GHz

indexing granularity/degree

bu
lk

lo
ad

/in
de

x
co

ns
tr

uc
tio

n
tim

e

8 Motivation > MOVIES > Experiments

?

But wait: how long does it take to
create an index in main memory?

Jens Dittrich, Information Systems Group

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 5 10 15 20 25 30

e
xe

cu
tio

n
 t

im
e

 [
se

c]

z-code length [2w bits]

qsort T1
qsort T4
rsort T1
rsort T4

N=6.4M
Tx AMD cores

at 2.4 GHz

indexing granularity/degree

bu
lk

lo
ad

/in
de

x
co

ns
tr

uc
tio

n
tim

e

8 Motivation > MOVIES > Experiments

But wait: how long does it take to
create an index in main memory?

Jens Dittrich, Information Systems Group

Movies Analogy

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

• => so far technically impossible!

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

• => so far technically impossible!

• movie camera shoots series of still images

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

• => so far technically impossible!

• movie camera shoots series of still images

• cinema shows series of still images

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

• => so far technically impossible!

• movie camera shoots series of still images

• cinema shows series of still images

• inertia of human eye

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Analogy
• moving picture capturing

• => so far technically impossible!

• movie camera shoots series of still images

• cinema shows series of still images

• inertia of human eye

• => human brain is tricked into believing that
it sees a continuous movement

9 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

• =>so far not done!

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

• =>so far not done!

• indexer shoots a quick series of still indexes

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

• =>so far not done!

• indexer shoots a quick series of still indexes

• query processor shows series of still
indexes

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

• =>so far not done!

• indexer shoots a quick series of still indexes

• query processor shows series of still
indexes

• inertia of object movement

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Movies Algorithm
• moving index capturing

• =>so far not done!

• indexer shoots a quick series of still indexes

• query processor shows series of still
indexes

• inertia of object movement

• => applications are tricked into believing that
they see a continuous movement

10 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Main Algorithm
F
4
5

F
4
6

F
4
5
8

F
4
5
9

I44 I45

U45

U46

updates

updates

queries

queries

U45

U44 optional input

I45I46

build index

build index

optional input

11 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

F
4
5

F
4
6

F
4
5
8

F
4
5
9

I44 I45

U45

U46

updates

updates

queries

queries

U45

U44 optional input

I45I46

build index

build index

optional input

Main Algorithm

12 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

F
4
5

F
4
6

F
4
5
8

F
4
5
9

I44 I45

U45

U46

updates

updates

queries

queries

U45

U44 optional input

I45I46

build index

build index

optional input

Main Algorithm

12 Motivation > MOVIES > Experiments

etc.

Jens Dittrich, Information Systems Group

Indexing Strategy

13 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Indexing Strategy

(a) any trie-partitioning

(a) kd-trie

10

0 1

1

.5,x

.5,y

1 .75,x

.75,y

2 4

.25,x

5 3

.5,y
0

10

10

13 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Indexing Strategy

(a) any trie-partitioning

(a) kd-trie

10

0 1

1

.5,x

.5,y

1 .75,x

.75,y

2 4

.25,x

5 3

.5,y
0

10

10

13 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Indexing Strategy

(a) any trie-partitioning

y
2

4
1

5

3 x

1111

0.0 0.5 1.0

0.5

1.0
0101 0111 1101

0100 0110 1100 1110

0001 0011

0000 0010

1001 1011

1000 1010

(b) data and z-curve data partitioning(a) kd-trie

10

0 1

1

.5,x

.5,y

1 .75,x

.75,y

2 4

.25,x

5 3

.5,y
0

10

10

13 Motivation > MOVIES > Experiments

(b) mapped to any space-filling curve

Jens Dittrich, Information Systems Group

Indexing Strategy

(a) any trie-partitioning

y
2

4
1

5

3 x

1111

0.0 0.5 1.0

0.5

1.0
0101 0111 1101

0100 0110 1100 1110

0001 0011

0000 0010

1001 1011

1000 1010

(b) data and z-curve data partitioning(a) kd-trie

10

0 1

1

.5,x

.5,y

1 .75,x

.75,y

2 4

.25,x

5 3

.5,y
0

10

10

13 Motivation > MOVIES > Experiments

(b) mapped to any space-filling curve

Jens Dittrich, Information Systems Group

Indexing Strategy

(a) any trie-partitioning

y
2

4
1

5

3 x

1111

0.0 0.5 1.0

0.5

1.0
0101 0111 1101

0100 0110 1100 1110

0001 0011

0000 0010

1001 1011

1000 1010

(b) data and z-curve data partitioning(a) kd-trie

10

0 1

1

.5,x

.5,y

1 .75,x

.75,y

2 4

.25,x

5 3

.5,y
0

10

10

5 bits
 sv

(c) index [w=2]

2w bits
zcode

32-2w bits
data suffix

27 bits
OID

0001
0010
1001
1110
1111

1...1
0...1
0...0
1...1
1...0

10...11
01...01
11...11
00...10
10...11

0....00101
0....00011
0....00100
0....00001
0....00010

13 Motivation > MOVIES > Experiments

(c) represented in compressed array
	
 	
 	
 	
 (or any other bulk-loaded tree structure)

(b) mapped to any space-filling curve

Jens Dittrich, Information Systems Group

How to Organize Update Buffers?

14 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

How to Organize Update Buffers?

(a) Logged MOVIES:

• log of updates

• pros: no latency for insert

• cons: possibly large

14 Motivation > MOVIES > Experiments

(a) log-buffer

OID x y sv timestamp
5 3 1 11 15:23:12:000
3 2 4 3 15:23:12:001
2 5 1 11 15:23:12:002
4 4 5 5 15:23:12:003
3 9 8 2 15:23:12:004
1 1 5 6 15:23:12:005
5 4 3 10 15:23:12:006
4 4 2 6 15:23:12:006
2 6 1 12 15:23:12:008
3 3 4 3 15:23:12:008
5 5 4 9 15:23:12:008
1 2 5 5 15:23:12:010

→

Jens Dittrich, Information Systems Group

How to Organize Update Buffers?

(a) Logged MOVIES:

• log of updates

• pros: no latency for insert

• cons: possibly large

14 Motivation > MOVIES > Experiments

(a) log-buffer

OID x y sv timestamp
5 3 1 11 15:23:12:000
3 2 4 3 15:23:12:001
2 5 1 11 15:23:12:002
4 4 5 5 15:23:12:003
3 9 8 2 15:23:12:004
1 1 5 6 15:23:12:005
5 4 3 10 15:23:12:006
4 4 2 6 15:23:12:006
2 6 1 12 15:23:12:008
3 3 4 3 15:23:12:008
5 5 4 9 15:23:12:008
1 2 5 5 15:23:12:010

→

(b) aggregation buffer

OID x y sv timestamp
1 2 5 5 15:23:12:010
2 6 1 12 15:23:12:008
3 3 4 3 15:23:12:008
4 4 2 6 15:23:12:006
5 5 4 9 15:23:12:008

→

(b) Aggregated MOVIES:

• keep most recent key for object

• cons: latency for insert

• pros: smaller

Jens Dittrich, Information Systems Group

Staleness

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

• assume current frame is F45

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

• assume current frame is F45

• a result returned by index I44 may have
been updated already, but...

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

• assume current frame is F45

• a result returned by index I44 may have
been updated already, but...

• ...is currently used to build a new index
=> result will become available in F46

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

• assume current frame is F45

• a result returned by index I44 may have
been updated already, but...

• ...is currently used to build a new index
=> result will become available in F46

• ...is collected in current update buffer
=> result will become available in F47

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Staleness
• results delivered by a query may be slightly

stale (=out-of-date)

• assume current frame is F45

• a result returned by index I44 may have
been updated already, but...

• ...is currently used to build a new index
=> result will become available in F46

• ...is collected in current update buffer
=> result will become available in F47

• Staleness ≤ 2∗tPhase Time

15 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

• pick tindex in near future

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

• pick tindex in near future

• tindex chosen to minimize query
enlargements (details see paper)

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

• pick tindex in near future

• tindex chosen to minimize query
enlargements (details see paper)

• pros: no timestamps in index required

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

• pick tindex in near future

• tindex chosen to minimize query
enlargements (details see paper)

• pros: no timestamps in index required

• pros: less storage space

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

PI MOVIES
• =predictive indexing strategy

• build index for a single point in time tindex

• pick tindex in near future

• tindex chosen to minimize query
enlargements (details see paper)

• pros: no timestamps in index required

• pros: less storage space

• cons: CPU intensive as incoming updates
need to be translated

16 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES
• =non-predictive indexing strategy

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES
• =non-predictive indexing strategy

• index contains objects valid at different
times

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES
• =non-predictive indexing strategy

• index contains objects valid at different
times

• cons: larger query rewrite

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES
• =non-predictive indexing strategy

• index contains objects valid at different
times

• cons: larger query rewrite

• cons: timestamps need to be stored

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

NPI MOVIES
• =non-predictive indexing strategy

• index contains objects valid at different
times

• cons: larger query rewrite

• cons: timestamps need to be stored

• pros: less CPU intensive as incoming
updates do not need to be translated

17 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Experiments

18 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Experiments
• largest road network ever used in

experiments

18 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Experiments
• largest road network ever used in

experiments

• up to 100 million moving objects

18 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Experiments
• largest road network ever used in

experiments

• up to 100 million moving objects

• 6 nodes: each 2 ∗ Dual Core AMD Opteron
at 2.4 GHz and 6GB main memory

• 2 nodes used as data generators

• up to 4 nodes used to index/query data

18 Motivation > MOVIES > Experiments

Jens Dittrich, Information Systems Group

Data

19

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

• had to write our
own:
moto.sourceforge.net

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

• had to write our
own:
moto.sourceforge.net

• build on ideas from
Brinkhoff generator

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

• had to write our
own:
moto.sourceforge.net

• build on ideas from
Brinkhoff generator

• 40 million nodes

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

• had to write our
own:
moto.sourceforge.net

• build on ideas from
Brinkhoff generator

• 40 million nodes

• 40 million edges
Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Data

19

• existing workload
generators did not
scale

• had to write our
own:
moto.sourceforge.net

• build on ideas from
Brinkhoff generator

• 40 million nodes

• 40 million edges

• up to 100 million
moving objects

Saarbrücken

Oldenburg

Jens Dittrich, Information Systems Group

Scalability in Index Size

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10

• BST B+T, BxT could not process largest dataset

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10

• BST B+T, BxT could not process largest dataset

• MOVIES hits network bandwidth

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Index Size

• MOVIES outperforms Bx-tree by a factor >10

• BST B+T, BxT could not process largest dataset

• MOVIES hits network bandwidth

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

 0.01

 0.1

 1

 10

 100

 100000 1e+06 1e+07

av
er

ag
e

st
al

en
es

s
[s

ec
, l

og
 s

ca
le

]

index size [# elements, log scale]

MOVIES Aggregated PI
MOVIES Aggregated NPI

MOVIES Logged PI
MOVIES Logged NPI

20 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Update Rate

 0

 2000

 4000

 6000

 8000

 10000

 100000 1e+06 1e+07

qu
er

y
ra

te
 [#

 q
ue

rie
s

pe
r s

ec
on

d]

update rate [# updates per second, log scale]

binary tree
B+-tree
Bx-tree

MOVIES Aggregated PI
MOVIES Aggregated NPI

MOVIES Logged PI
MOVIES Logged NPI

21 Motivation > MOVIES > Experiments

single node

Jens Dittrich, Information Systems Group

Scalability in Update Rate

 0

 2000

 4000

 6000

 8000

 10000

 100000 1e+06 1e+07

qu
er

y
ra

te
 [#

 q
ue

rie
s

pe
r s

ec
on

d]

update rate [# updates per second, log scale]

binary tree
B+-tree
Bx-tree

MOVIES Aggregated PI
MOVIES Aggregated NPI

MOVIES Logged PI
MOVIES Logged NPI

21 Motivation > MOVIES > Experiments

single node

• NPI MOVIES better than PI MOVIES (high up.rate)

Jens Dittrich, Information Systems Group

Shared-Nothing Scale-Out

• N=25.8M

• special network setup for shared-nothing

• up to 2Gb/s bandwidth node2node

0
5E6

10E6
15E6
20E6
25E6
30E6
35E6
40E6
45E6
50E6
55E6
60E6

1 2 3 4m
ax

 u
pd

at
e

ra
te

 [#
 u

pd
at

es
 p

er
 s

ec
on

d]

number of processing nodes

Transfer limit
MOVIES Aggregated PI

MOVIES Aggregated NPI
MOVIES Logged PI

MOVIES Logged NPI

22 Motivation > MOVIES > Experiments

multiple nodes

Jens Dittrich, Information Systems Group

Shared-Nothing Scale-Out

• N=25.8M

• special network setup for shared-nothing

• up to 2Gb/s bandwidth node2node

0
5E6

10E6
15E6
20E6
25E6
30E6
35E6
40E6
45E6
50E6
55E6
60E6

1 2 3 4m
ax

 u
pd

at
e

ra
te

 [#
 u

pd
at

es
 p

er
 s

ec
on

d]

number of processing nodes

Transfer limit
MOVIES Aggregated PI

MOVIES Aggregated NPI
MOVIES Logged PI

MOVIES Logged NPI

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

av
er

ag
e

st
al

en
es

s
[s

ec
]

number of processing nodes

MOVIES Aggregated NPI
MOVIES Aggregated PI

MOVIES Logged NPI
MOVIES Logged PI

22 Motivation > MOVIES > Experiments

multiple nodes

Jens Dittrich, Information Systems Group

Scalability in Index Size

 1e+06

 1e+07

 1e+08

 1e+06 1e+07 1e+08

up
da

te
 ra

te
 [#

 u
p.

pe
r s

ec
, l

og
 s

ca
le

]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

23 Motivation > MOVIES > Experiments

4 nodes

Jens Dittrich, Information Systems Group

Scalability in Index Size

• up to 55 million updates per second!

 1e+06

 1e+07

 1e+08

 1e+06 1e+07 1e+08

up
da

te
 ra

te
 [#

 u
p.

pe
r s

ec
, l

og
 s

ca
le

]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

23 Motivation > MOVIES > Experiments

4 nodes

Jens Dittrich, Information Systems Group

Conclusions

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

• movie camera analogy

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

• movie camera analogy

• also similarities to data warehousing

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

• movie camera analogy

• also similarities to data warehousing

• but: create warehouse several times per second
to minimize staleness

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

• movie camera analogy

• also similarities to data warehousing

• but: create warehouse several times per second
to minimize staleness

• simple yet very efficient

24

Jens Dittrich, Information Systems Group

Conclusions
• we question two assumptions done in almost all

previous work
1. „data does not fit into main memory“
2. „maintain index for incoming updates“

• MOVIES builds a series of read-optimized main
memory indexes

• movie camera analogy

• also similarities to data warehousing

• but: create warehouse several times per second
to minimize staleness

• simple yet very efficient

• outperforms existing techniques by orders of
magnitude

24

Jens Dittrich, Information Systems Group

Future Work
• investigate effects of staleness on quality

• other read-optimized indexes

• use cache-optimized indexes

• different merge strategies

• adaptive merge strategies based on
workload

• MOVIES on flash

• application to general data streams

Thanks!

25

