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ABSTRACT
Modern enterprises need to pick the right DBMSs e.g. OLTP,
OLAP, streaming systems, scan-oriented systems among others,
each tailored to a specific use-case application, for their data man-
aging problems. This makes using specialized solutions for each
application costly due to licensing fees, integration overhead and
DBA costs. Additionally, it is tedious to integrate these specialized
solutions together. Alternatively, enterprises use a single special-
ized DBMS for all applications and thereby compromise heavily
on performance. Further, a particular DBMS (e.g. row store) can-
not adapt and change into a different DBMS (e.g. streaming sys-
tem), as the workload changes, even though much of the code and
technology is replicated anyways.

In this paper we discuss building a new type of database system
which fits several use-cases while reducing costs, boosting perfor-
mance, and improving the ease-of-use at the same time. We present
the research challenges in building such a system. We believe that
by dropping the assumption of a fixed store, as in traditional sys-
tems like row store and column store, and instead having a flexible
storage scheme we can realize much better performance without
compromising the cost. We outline OctopusDB as our plan for
such a system and discuss how it can mimic several existing as
well as newer systems. To do so, we present the concept of storage
view as an abstraction of all storage layouts in OctopusDB. We dis-
cuss how the heterogenous optimization problems in OctopusDB
can be reduced to a single problem: storage view selection; and de-
scribe how a Holistic Storage View Optimizer can deal with it. We
present simulation results to justify our core idea and experimen-
tal evidence on our initial prototype to demonstrate our approach.
Finally, we detail the next steps in our work.

1. INTRODUCTION

1.1 Background
Database management systems started off as monolithic systems.

However, database engineers soon started tuning their performance
for specific applications. Consequently, currently we are witness-
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ing a split of data management systems into several specialized
solutions [20, 21] e.g. OLTP for transactional queries, OLAP for
read-only complex reporting queries, DSMS (data stream manage-
ment systems) for continuous window queries, and search engines
for read-only keyword queries. It started in the mid-nineties [10]
when the database engineers understood that the DBMSs of that
time were ill-equipped to cope with the size of the datasets and
complexity of OLAP-queries. Therefore a separate type of sys-
tem was forked from the one size fits all DBMS code line [11].
That system is based on a column store and became one of the
most popular and successful approaches for OLAP; products in-
clude SAP BI Accelerator, InfiniDB and Paraccel. At the same
time other types of systems were forked including DSMS (data
stream management systems) [23]; products include StreamBase.
In addition, search engines developed into a separate community
sometimes re-inventing DBMS technology. Yet these people are
unwilling to use DBMS systems as a backend [22]. As a result, we
have one specialized system per use-case application.

1.2 Motivation
A typical enterprise, today, employs a variety of data manag-

ing applications, and hence a variety of DBMSs. For instance, a
banking enterprise uses an OLTP system for real time transactions,
OLAP system for business intelligence and analytics and Stream-
ing system for stock trading. Additionally, in many cases applica-
tions need to adapt to new requirements or evolve over time and
usage; possibly requiring a switch to a different DBMS for opti-
mal performance. For instance, in the banking enterprise the stock
data prior to a time window may be pushed into a Archival sys-
tem. These heterogenous systems, however, need to be integrated
by copying data from one database to another using complex ETL-
style data pipelines. Moreover, these specialized systems have their
specialized vendors and DBAs, thereby incurring further licensing
and maintenance costs. Obviously, all of this leads to extra costs
in terms of development costs, maintenance costs, and DBA costs.
So rather than making the world of data management easier, we
have created a zoo of systems that sometimes has the opposite ef-
fect: it makes life of a company harder and more costly. We agree
that for companies who invest a lot into connecting the different
species in their zoo, it will eventually lead to a well-integrated and
efficient overall system. Still, we believe that the zoo-keeping costs
are non-trivial, especially for small to medium-sized business. We
also believe that adapting such a zoo to new requirements, changing
workload, or new types of applications may be prohibitive.

Moreover, one technology (e.g. row stores, column stores etc.)
per system does not always deliver the best performance. For ex-
ample, consider a university database with Student and Lecture ta-



bles. Now for a query workload requesting students based on lec-
ture types, credit points or instructor, we need to access only few at-
tributes from the Lectures table but most (or all) attributes from Stu-
dent table. For such a use-case scenario it makes sense to store the
Student table in a row store and the Lecture table in a column store,
thereby deriving the maximum performance. However, such a con-
figuration is not possible to achieve in traditional per-application
database systems, except in Fractured Mirrors [17]. Fractured Mir-
rors, however, has an exorbitant update cost. Moreover, as students
graduate and hence do not attend lectures anymore, their details
are not fetched by our query workload. Therefore, to improve per-
formance it might make sense to partition the cold data (graduated
students) in the Student table into a column store, utilizing com-
pression, and the hot data (current students) into a row store. Again,
such a configuration is impossible to achieve in a single traditional
database system.

Further, we analyzed the TPC-H benchmark to illustrate how
the use-case scenario and the workload could determine the right
DBMS technology. For each query in the benchmark we marked
the attributes referenced by it in each of the 8 relations. Our
analysis revealed that each relation has a different attribute access
pattern such that some attributes are referenced more than others
while some attributes are not referenced at all e.g. retailprice,
comment in PART relation. Further, several groups of attributes
are co-referenced in the same queries. Thus, a single type of
store (row, column) may not suit all relations. For instance, re-
lations LINEITEM, NATION and REGION have several attributes
referenced in the same queries and therefore a row store could
be more suited. On the other hand, relations PART, SUPPLIER,
CUSTOMER and ORDER have only few attributes referenced and
hence column store would be the better choice. This analysis hints
for a more holistic approach to database storage design.

2. PROBLEM STATEMENT
In this section we discuss the problem we focus on and describe

our overall goal. As highlighted in the previous section: (1) A sin-
gle specialized DBMS may not deliver the best performance for all
applications, (2) Modern enterprises, anyway, end up having a zoo
of database systems, (3) It is tedious to stitch together (complex
ETL-style data pipelines) and costly to maintain (development,
licensing, DBA costs) different database systems, and (4) Optimal
performance over changing workloads, in a single or a zoo of
DBMSs, remains an issue. Therefore, we need a one-size-fits-all
database system which automatically adapts to different use-case
scenarios and betters performance at the same time. We state our
research goal as follows:

Research Goal. A one-size-fits-all database system which caters
well to all existing and newer data management use-cases and
adapts automatically to initial configuration as well as to changing
workload; all with improved performance, lowered cost and better
maintainability at the same time.

We discuss the research challenges in our problem in the follow-
ing section, related work in Section 4, OctopusDB as our approach
to the problem in Section 5, preliminary results in Section 6, and
next steps in Section 7.

3. RESEARCH CHALLENGES
Below we discuss the major research challenges associated with

our problem.

3.1 Different Storage Layouts under a single
umbrella

Row stores are typically used in transactional processing sys-
tems (OLTP). Column stores on the other hand make heavy use of
compression and are used in read-oriented workloads. Many peo-
ple argue that these are completely different systems [2]. Further,
streaming systems may not have any store at all. The one-size-fits-
all system needs to cater the different storage layouts for differ-
ent use-case scenarios. Additionally, the system need to adapt and
interchange the storage layouts to changing workoads. The chal-
lenge, therefore, is to have a flexible storage scheme by bringing
the different layouts into a single system. This brings to the fore
three additional issues that we have to care about.

First, layout selection and maintenance is a major concern with
having different layouts in a single system. This is because with
changing workloads, the system needs to automatically decide the
most appropriate layouts to create, maintain them with future up-
dates and finally decide upon when, if at all, to discard them alto-
gether. Second, query processing across different storage layouts is
another important issue. Ideally, we would want the query proces-
sor to abstract much of the functionality across different layouts.
At the same time, we would not want to completely miss out the
storage layout specific optimizations e.g. compression in column
stores.

Finally, apart from row and column layouts of the full table, the
system can also create other sub-structures to boost performance.
For instance, it can crack the table, not only horizontally as in [14]
but also vertically, depending upon which part of it is accessed by
the incoming queries; partition the tables horizontally or vertically
in case of a definitive workload information; or create materialized
views on any subset of the data. The challenge is to automatically
create and manage this inventory of storage layouts. Further, all
layouts discussed so far store data in rectangular fashion. It would
be interesting to even consider non-rectangular storage layouts for
the given data. The underlying idea in a one-size-fits-all system
remains the same: relax the fixed layout assumption. The unlimited
possibilities thereafter offer unique research challenges.

3.2 Automatic Adaptive Bifurcation instead of
administered Eventual Integration

Currently, companies having several types of database systems
spend a lot of time and effort to eventually integrate them together.
As pointed before, these costs are non-trivial for small to medium
sized companies. Further, the integrated system is less adaptive to a
change in workload followed by a consequent addition or removal
of a database system. Therefore, starting with a bag of database
systems in the first place might end up with a loosely integrated
system which is difficult to manage and expensive to maintain. In-
stead, since much of the code and technology of different DBMSs
is anyways replicated, we can start with a single system for all ap-
plications.

The challenge, therefore, is to adaptively bifurcate the system
into specialized technology (row, column etc.) depending upon the
workload. The system needs to continuously monitor the workload
and reassess its configuration. This makes sense because (1) we
have a tightly integrated system (2) we abstract much of the code
and technology and fork out only the necessary one, and (3) the
system is fairly simple initially and is later adapted to be only as
much complex as needed. We discuss the last point in more detail
below.

3.3 Simplicity Vs Optimization
Simplicity is an important consideration while designing



database systems. In several cases too much of optimization in a
database system is an overkill. For example, the materialized views
created for each operator output in MonetDB [3] can be detrimen-
tal for changing workloads. Simplicity pays off in terms of per-
formance and house-keeping. The challenge, therefore, is to strike
the right balance between simplicity and optimization in the sin-
gle system. Of course, simplicity might be traded for performance
by incorporating more complex optimizations as the workload gets
more sophisticated. But the key is to avoid any overkill.

Another aspect of simplicity is to support several use-cases in
the minimal configuration, i.e. the system should first try to mimic
as many specialized systems as possible before upgrading the con-
figuration. This is necessary because changing configuration could
be an overkill as well as expensive. Other people have also tried
to develop systems which mimic more than one system. For exam-
ple, [4] tries to mimic a column store in a row store. The challenge,
however, is to determine the limiting point for the mimic.

Finally, a database system which is always initialized in the most
rudimentary configuration might be quite slow till it adapts to the
initial workload. Depending upon the adaptability speed, this slow
start can be quite expensive. Additionally, we may incur the startup
cost always, even when the system is reset or the data is ported
to another instance. Instead, the system should be able to set its
initial configuration, depending upon the initial workload, in order
to derive the maximum performance straightaway. The challenge
again lies in deciding how much of the simplicity should be lost at
the very outset.

4. RELATED WORK
Traditional DBMS Landscape. Several papers have claimed

that one size does not fit all. It started with [10] who noted
that DBMSs do not work well for DSS-type workloads. This
work lead to one of the first column-oriented data warehouses:
SybaseIQ. Later on, other authors supported the idea of differ-
ent types of database systems for different markets as well [20,
21]. This split the landscape into at least four different sys-
tems: SearchEngines (read-only inverted index), OLTP (trans-
actional row-store), OLAP (read-only column-store) and DSMS
(continuous window queries on unbounded streams) which origi-
nated from append-only databases [23]. However, the major differ-
ence of OLTP and OLAP are different access patterns and missing
ACID semantics in OLAP. Furthermore, it is somewhat easier to
use compression in column stores, see [1] for a comprehensive tu-
torial. However, a recent paper has argued that column stores may
be efficiently emulated on row stores as well [4]. In any case, note
that OctopusDB may make use of the existing optimizations for
column stores and/or row stores. The advantage of OctopusDB is
that we are not restricted to a particular store and workload. In
addition, as we show in this paper, the boundary of OLTP/OLAP
and DSMS may also be removed into a unified OctopusDB sys-
tem. Furthermore, there have been several efficient approaches al-
ready to implementing search engines as an application on top of
an OLTP database [12, 24]. Thus, given these and other recent ad-
vancements, it is questionable whether search engines will survive
as a separate code base.

Lightweight Systems. Recently, a paper claimed that even in
the traditional OLTP market existing DBMSs can be beaten by a
large factor [22, 15]. This approach, HStore, is basically a stripped
down version of an OLTP row-store. Again, this stripped down
system could be emulated in OctopusDB as well. Thus, HStore is
orthogonal to what we propose. Another line of systems has re-
cently appeared exploring array-oriented systems for scientific ap-
plications [7]. Their major difference is an array data model with

additional scientific operators. We believe that OctopusDB could
also be extended to offer an Array Storage View. However, that
discussion is beyond the scope of this paper.

Scanning Systems. Due to the dramatic changes in hardware
(random access is hardly becoming better, sequential access is im-
proving by up to 50% per year), index access pays of less and
less. Therefore several authors have proposed to drop indexed-
based query plans entirely and resort to scanning. [13] proposes
techniques to reduce the scanning costs on modern hardware ar-
chitectures. [18] proposed per-tuple constant-time processing on a
row-store. [27] examines shared-scans, i.e. multiple query results
are computed using a single scan. This idea is extended in [26] to
so-called clock-scans, i.e. continuously running shared scans. Fi-
nally, [5] proposed to compute multiple star queries simultaneously
using a static shared operator pipeline and a clock scan as its input.
All these techniques show the viability of scan-based plans and we
believe that all those techniques may be integrated into OctopusDB.
Still we believe that a system should be able to offer index access
for highly selective queries as well. OctopusDB offers this option.

Rodent store [8] allows DBAs to declare the database store us-
ing an algebra. We agree with the authors of [8] that currently
considerable functionality is duplicated as row-stores and column-
stores are two separate lines of development that share however
considerable common technology. However, Rodent Store still as-
sumes that there has to be a store. Furthermore, it simply provides
an abstract way to declare a store in an OLTP or OLAP-style sys-
tem. No unified approach with streaming systems is provided as
it is the case for OctopusDB. In addition, no updateable storage
view mechanism is present in Rodent Store. GMAP [25] presents a
DDL for defining physical structures (similarly to [8]). In contrast
to OctopusDB, GMAP does neither handle unification with stream-
ing systems, automatic store selection and adaption, recovery, nor
union queries.

Cracked databases, e.g. [14], break database tables into
pieces by piggy-backing index-reorganization requests to individ-
ual queries, i.e. queries are interpreted as hints to break the database
into pieces. Therefore cracked databases have similarities with
partial indexing [19] and adaptive indexing [9], i.e. dynamic ad-
justment of index granularity to a given workload. Furthermore in
contrast to OctopusDB, cracked databases assume a column-store
(the authors mention that it could work on a row-store as well). In
contrast, we do not assume a fixed store. In addition, in cracked
databases the store may not be exchanged as it is the case in Oc-
topusDB. Therefore cracked databases are orthogonal to what we
propose.

Finally, self-tuning DBMSs [6] have looked at ways to automate
index selection. We believe that some of these techniques may be
extended to support OctopusDB. At the same time we believe that
automatic storage view selection in OctopusDB is a hard problem
justifying a separate research study.

5. OUR APPROACH: OCTOPUSDB
In this section we outline OctopusDB as our approach to a one-

size-fits-all database system. We first describe the architecture of
OctopusDB and subsequently discuss the core ideas in it.

5.1 Architecture
Figure 1 shows the main components of OctopusDB. The system

contains components similar to the ones known from traditional
DBMSs: transaction manager, query optimizer, recovery manager,
purging and checkpointing and query and storage catalogs. The
most striking difference, however, is the primary log store and the
storage view store. The external user has a single programming
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Figure 1: OctopusDB Architecture

interface (API) to interact with the overall system. Internally, Oc-
topusDB passes all inputs from the user to the primary log store
and retrieves results to user queries from storage view store.

5.2 Storage Views
OctopusDB departs from existing database systems by not hav-

ing any fixed hard coded store e.g. row store, column store by de-
fault. Instead, OctopusDB records all database operations to a se-
quential log, called primary log, by creating appropriate logical log
records. Each log entry contains a unique log sequence number,
the database operation performed and the input parameters. Octo-
pusDB stores the primary log persistently on durable storage (hard
disk or SSD) following the write-ahead logging (WAL) protocol.
It later creates arbitrary physical representations of the log, called
Storage Views (SVs), depending on the workload. For instance,
OctopusDB can create Row SV for transactional queries, Column
SV for read-only queries. Additionally, it can create different (or
same) SVs for different partitions of the data e.g. hot and cold data.
Further, OctopusDB can create Index SVs or any other materialized
views on any subset (or full) data. Finally, OctopusDB considers
the primary log as just another SV, a Log SV, and can even decide to
do away with it e.g. to emulate a streaming system. Thus, by having
a completely flexible storage layer, in the form of SVs, OctopusDB
addresses the research challenge of having different storage layouts
under a single umbrella and has two advantages: (1) It can mimic
OLTP, OLAP, Streaming Systems as well as several other types of
database systems, (2) It dramatically improves the overall perfor-
mance by morphing into any hybrid combination of these systems.

5.3 Storage View Selection
OctopusDB provides a system interface for users to insert, up-

date and query data. Internally, it automatically figures out which
SVs to create, maintain and iterate for the user queries. The user is
not overwhelmed with the low levels decisions. The goal, therefore,
is to come up with the most suitable SVs for the given database
operations, while keeping the user agnostic to the internal data rep-
resentation at the same time. Thus, the concept of Storage Views in
OctopusDB reduces database tuning to a single optimization prob-
lem: storage view selection. More specifically, by automatically
deciding upon the right storage views to create, OctopusDB ad-
dresses the research problem of having a automatic “adaptive bi-
furcation” instead of administered “eventual integration”.

5.4 Holistic Storage View Optimizer
Since OctopusDB has a single optimization problem, as de-

scribed above, it has a single Holistic Storage View Optimizer to
deal with it. In general, each class of SV may implement its own
access algorithms optimized for the particular storage structure.
For instance, a Row SV may use row-wise compression and row-

oriented iteration, e.g. [13]. In contrast, a Col SV may implement
column-oriented compression and vectorized iteration [3]. Outside
those SVs OctopusDB’s holistic storage view optimizer then im-
plements any appropriate techniques to:

(1.) speed-up query processing, i.e. pick the most promising phys-
ical execution plan to compute a query;
(2.) apply updates to any SV in the SV store, i.e. pick the best
update method like a batch-oriented differential update or log-
structured merge-trees;
(3.) decide on the SVs to create and keep in the SV store,
i.e. whether to materialize a new SV or drop an existing one;
(4.) combine results spanning several SVs, e.g. to join data from a
row, a column store, and a streaming window.

The holistic SV optimizer is responsible for maintaining the pri-
mary SV (the log) and to create and maintain further secondary
SVs. To do this, the optimizer uses a scan (index and full table)
and update cost model to decide upon the appropriate SVs to create
and subsequently maintain. Additionally, the optimizer uses a SV
transformation cost model to decide whether to transform one SV
into another. Finally, the optimizer is also responsible for deciding
whether to drop a SV altogether. In this way, the holistic SV op-
timizer manages a storage view lattice, depending on the use-case
and the workload, within the Storage View Store of the OctopusDB.
For example, consider a travel database. The optimizer may create
a Column Storage View for customer data, and a Row and Index
Storage Views on ticket data. It can later archive tickets before a
specified date into a Column Storage View. Given such a SV lat-
tice, the optimizer speeds-up query processing by picking the most
appropriate input Storage Views for a given query. Thus, the holis-
tic SV optimizer in OctopusDB decides on the research problem of
simplicity vs optimization.

6. PRELIMINARY RESULTS
In this section we provide the simulation insight and the

experiment evidence of our approach in OctopusDB. But first we
describe the use-case scenario used in our analysis below.

Use-Case Scenario. Consider a flight-booking system with a ta-
ble TICKETS containing data on flight tickets; CUSTOMERS con-
taining data on customer. Queries select tickets using predicates
on different attribute subsets of TICKETS. For all selected tickets
we retrieve all attribute values of matching customers. We assume
that TICKETS is frequently updated. Thus, index maintenance on
TICKETS is too expensive. This is a real-world example as pro-
posed in [26]. This scenario calls for having a column layout on
TICKETS and a row layout on CUSTOMERS. However, this flexi-
ble layout is not supported by current DBMSs. The update rate also
precludes using fractured mirrors.

6.1 Simulation Insight

6.1.1 Flexible Layout
In this simulation we evaluate the scan costs for Row, Column,

Indexed Row, and Indexed Column layouts over queries with
varying selectivity and number of referenced attributes. The idea
is to show that a single layout may not be suitable for the entire
selectivity-referenced attributes space.

Setup. We use a simple cost model to estimate the random
and sequential I/O costs for Row and Column layouts. Index
scans incur an extra B+-Tree index lookup cost followed by the
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Figure 1: plan space picasso-style diagram for one table, N=100,000, number of attributes=40; x axis: varying selectivity from 0.0
to 1.0; y-axis: varying number of referenced attributes r; color depicts best plan; ”red”=col scan, ”orange”=row scan, ”yellow”=col
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IS A BETTER VISUALIZATION THAN IN THE ORIGINAL PICASSO PAPER: THEY NEEDED 3D TO SHOW COSTS; THE
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are: Step 1: Construct Attribute Affinity Matrix from Attribute
Usage Matrix. Step 2: Construct Affinity Graph corresponding
to Attribute Affinity Matrix. Step 3: Form a linearly connected

spanning tree and generate all meaningful fragments in one
iteration by considering a cycle as a fragment. O(n2) algorithm.
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Figure 3: Workload Costs for Different Systems

respective Row or Column scan of the selected tuples. We vary
number of referenced attributes from 1 till 20 and selectivity from
0.0 till 1.0.

Result. Figure 2 shows the result of the simulation. For each
selectivity-attributes pair, we depict the cheapest layout (Row,
Column, Indexed Row, Indexed Column) by a square of size
proportional to the fraction of its cost to the maximum cost in the
entire space. We can see four distinct regions in the figure where
Row, Column, Indexed Row and Indexed Column are the best
layouts respectively. Particularly, we observe that less number of
referenced attributes favor Column layouts as compared to Row
layouts. Additionally, higher selectivity (lesser tuples selected)
favor indexed layouts as compared to unindexed ones.

Conclusion. From the result above we conclude that a single layout
is not suitable for all use-cases. The right layout depends upon the
workload. Hence, a flexible storage scheme makes sense for a one-
size-fits-all database system.

6.1.2 Comparison with specialized DBMSs
In this simulation we compare the performance of OctopusDB on

a given workload with Row Store, Column Store, Index Row Store,
Indexed Column Store, Fractured Mirrors and Indexed Fractured
Mirrors. The idea is to show that a one-size-fits-all system, like
OctopusDB, can still outperform each of these specialized systems.

Setup. The Ticket and Customer tables contain 100, 000 and
20, 000 tuples respectively and 20 attributes each. The workload

consists of equal number of scan and update queries having selec-
tivity of 0.9 and 0.1 on Ticket and Customer tables respectively.
Additionally, the queries access 4 and 20 attributes on Ticket and
Customer tables respectively. We use the same cost model as in
the previous simulation to estimate the total query and update costs.

Result. Figure 3 shows the overall workload time for different
systems. We further break the overall time into query and update
costs, shown as stacked bars. We can observe that only Indexed
Fractured Mirrors match OctopusDB in terms of query cost.
However, it has far higher update cost. Thus, as a result of flexible
storage layout, OctopusDB outperforms all other database systems
in terms of overall performance by a factor of up to 5.

Conclusion. From the above result we conclude that a single one-
size-fits-all database system can not only adapt to several use-cases
but can also outperform traditional database systems by a large
margin.

6.2 Experimental Evidence
In this experiment we show how OctopusDB may automatically

adapt SVs to a query response time requirement. We assume that
the user specified that workload should not take longer than 0.1 sec.

Setup. Our first prototype of OctopusDB is a main memory
implementation in Java 1.6. However, note that OctopusDB is
not limited to main memory scenarios but could also be run as
an external memory system. From our use-case scenario, we use
Tickets and Customers records having 20 attributes each for
our experiment. For each measurement, the workload contains
a batch of 40 randomly picked scan and update queries in the
ratio 1:3. We pick the search key attribute for scan queries using
zipfian distribution with a skewness factor of 4; scan queries
have a selectivity of 0.01. The experiment was executed on a
medium-sized computing node. We used a single Intel Xeon
Quadcore, 2.66Ghz (E5430) with 16GB of main memory. The
operating system was Linux 2.6.27.7-9-xen.

Result. Figure 4 shows the automatic adaption of SVs for Tickets
and Customers to query time requirement of 0.1sec when scaling
database size. The figure shows the evolvement of workload
time for both relations, the sum, as well as the SV transformation
costs. With the increase in database size, we observe that several
SVs become successively expensive beyond tolerable limits.
OctopusDB copes with it by transforming the SVs to more suitable
ones. This is impossible to achieve in traditional database systems.

Conclusion. OctopusDB can adapt over changing database size
(use-case) by keeping a flexible storage layer. It meets the per-
formance requirements by successively transforming the SVs into
more suitable ones. Therefore, storage view selection is a core
problem and a single holistic optimizer addressing it makes sense.

7. NEXT STEPS

7.1 Picking the Right layout
One of the core strengths of OctopusDB is picking the right SV

(and the layout). We would therefore like to focus on picking the
right layouts. We can pick the layout (row, column) on a per-table
basis. Additionally, we can partition attributes in any arbitrary man-
ner and store groups of attributes together i.e. pick the layout on
a per-attribute basis; row and column layouts being the two ex-
tremes of the variety of possible layouts. Horizontal partitioning is
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Figure 4: Automatic adaption in OctopusDB

another aspect which can play an important role. However, arriv-
ing at the right vertical and horizontal partitioning, adapting it over
changing workload and considering even non-rectangular layouts
is a challenge. Our next step is to investigate this challenge and
come up with alternative techniques for dynamically arriving at the
most suitable layout.

7.2 SV Compression
Compression is one of the most distinguishing features of col-

umn stores. Some people have argued that row stores can emulate
efficient compression as well [4]. Our focus is to look into how
compression plays an important role in the entire range of possible
SVs; Row and Column SVs being just special cases. Because of
the varying tuple size in vertically partitioned layouts, tuple level
compression is a challenge. Our next step is to investigate that in
more detail.

7.3 SV Maintenance
The bag of SVs in OctopusDB need to be maintained for further

updates. View maintenance is an old and extensively researched
problem in database systems. However, heterogeneous nature of
the SVs is a unique challenge in OctopusDB. Further, the different
possible layouts in OctopusDB differ from a fixed standard layout
in traditional view maintenance. Therefore it needs a separate at-
tention and is our next step of research.

7.4 OctopusDB Benchmarking
Next, to justify our claim that OctopusDB will be able to out-

perform other specialized systems, we will test our extended Oc-
topusDB prototype on several different benchmarks: TPC-E for
OLTP, TPC-H for OLAP, and Linear Road for Streaming systems
among others. Finally, the existing benchmarks are for specialized
applications (OLTP, OLAP etc) whereas increasingly there is a de-
mand for combined OLTP and OLAP systems [16, 26]. Therefore,
reflecting the newer demands, we would like to come up with a new
benchmark for one-size-fits-all database systems.
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