A Simplified Architecture for Fast, Adaptive Compilation and
Execution of SQL Queries

Immanuel Haffner
Saarland Informatics Campus
immanuel haffner@bigdata.uni-saarland.de

400® DuckDB Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
‘ tion time is the time to execute the
012345678

Compilation time [ms] Machine code and does not include

the compilation time.
ABSTRACT

Query compilation is crucial to efficiently execute query plans.
In the past decade, we have witnessed considerable progress in
this field, including compilation with LLVM, adaptively switch-
ing from interpretation to compiled code, as well as adaptively
switching from non-optimized to optimized code. All of these
ideas aim to reduce latency and/or increase throughput. However,
these approaches require immense engineering effort, a consid-
erable part of which includes reengineering very fundamental
techniques from the compiler construction community, like reg-
ister allocation or machine code generation - techniques studied
in this field for decades.

In this paper, we argue that we should design compiling query
engines conceptually very differently: rather than racing against
the compiler construction community — a race we cannot win
in the long run - we argue that code compilation and execu-
tion techniques should be fully delegated to an existing engine
rather than being reinvented by database architects. By carefully
choosing a suitable code compilation and execution engine we
are able to get just-in-time code compilation (including the full
range from non-optimized to fully optimized code) as well as
adaptive execution in the sense of dynamically replacing code
at runtime - for free! Moreover, as we rely on the vibrant com-
piler construction community, it is foreseeable that we will easily
benefit from future improvements without any additional engi-
neering effort. We propose this conceptual architecture using
WEBASSEMBLY and V8 as an example. In addition, we implement
this architecture as part of a real database system: murable. We
provide an extensive experimental study using TPC-H data and
queries. Our results show that we are able to match or even
outperform state-of-the-art systems like HYPER.

w
o
S

mutable (ours)

Execution time [ms]
= N
o o
o o

HyPer
0

1 INTRODUCTION

To execute SQL queries, database systems must determine for
each query a query execution plan (QEP) that defines how to exe-
cute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter
for query execution, as it is easy to maintain and portable [24].
The VorLcano model presented a generic and extensible design,

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Jens Dittrich
Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland.de

adopted by many database systems that followed [15]. The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 22, 32]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a
minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation
and compilation techniques and sparked a seemingly endless de-
bate which of the two approaches to prefer [22-24, 27, 32, 38, 42].
Recently, Kohn et al. proposed an adaptive approach to query
execution, where the database system can seamlessly transition
from interpreted to compiled query execution [25]. This approach
requires both a query interpreter and a query compiler that must
be interoperable, which is achieved by a particular execution
mode named morsel-wise execution [28]. Kersten et al. followed
up on this work and present adaptive execution by switching
from non-optimized to optimized code during query process-
ing [23]. Despite the promising results of both works, we believe
that implementing either approach requires expertise in inter-
preter and compiler design and poses an immense development
effort, ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query exe-
cution engines of database systems. Rather than reengineering
compiler technology, we suggest to employ a suitable and — most
importantly — existing execution engine that takes care of just-in-
time (JIT) compilation and adaptive execution. We dramatically
reduce the complexity of the system by relying on existing infras-
tructure. By translating the QEP to an interchange format and
delegating execution to an underlying engine, we are able to dras-
tically reduce compilation times while maintaining competitive
execution performance, as exemplified in Figure 1.
Contributions
(1) We present a new, simplified, conceptual architecture of a

query execution engine that allows us to delegate JIT com-
pilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques
researched and developed by the compiler community for
decades.

(2) We demonstrate how to implement this architecture in a real
database system: murable. We use WEBASSEMBLY as interme-
diate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually
works as well. murable supports the full pipeline of compiling
SQL queries to executable code.

(3) We discuss in detail the pros and cons over compiling with
LLVM, adaptive compilation, and vectorized execution.

(4) We discuss current limitations of our approach and how they
will get resolved in the (near) future.

(5) We provide an extensive experimental study, showcasing
that even though we use an architecturally much simpler

HYPER w/ adaptive

execution [25] HYPER [32] UMBRA [23] mufable (ours)
QEP QEP QEP, ¢ QEP
Tipy TUPLES
(Compiler)
Umbra IR /
U2
[Compiler] [Compiler] [Compiler] Umbra IR
TN~
LLVMIRH3 LLVM IR LLVMIR ™ U1 WEBASSEMBLY
H1 I’ —————————————— ;
I =—=t== = FLYING START || LrFToFF “
Bytecode | H2\ Lyl el (Compiler & I| (Compiler &
Generator ! Optimizer :: Machine Code | [Machine Code
LLVM 1 % 1 Generator) : Generator) TurBOFAN
Bytecode | — i " (Optimizing ||
|[LLVM Machine || | tierap, | Compiler)
i Code Generator b x86/? 1
Bytecode | = —————Tomrios (slightly !
MEECRES x86/ARM/... optimized) :x86/AR
Interpreter (possibly | (slightly /x86/ARM...
optimized) : optimized) (optimized)
Hardware Hardware 1
N eee——____

(a) Architectural overview of compiling query engines.

HYPER w/ murable
adaptive ex- HYPER [32] | UmBra [23] (ours)
ecution [25]
Interpretation v X x v
Fast JIT
Compilation X X v v
Optimizing
Compilation v v v v
Adapn.ve v X 7 p
Execution
Different HW
”
(x86, ARM, etc)) 4 v v(2) v

(b) Feature matrix for the architectures in Figure 2a.

Figure 2: Orange O means (potentially re-) implemented
by the system itself, green O means used off the shelf, and
red O means desirable but lacking,.

approach than state-of-the-art, we are able to match or even

outperform state-of-the-art query compilers like HYPER.
Outline — In Section 2 we present our architecture and com-
pare to other compiling query engines. We further investigate
the strengths and weaknesses of our architecture. In Section 3
we introduce WEBASSEMBLY. In Section 4 we elaborate how we
compile QEPs to WEBASSEMBLY. In Section 5, we present our
ad-hoc generation of specialized library code. We explain how
we execute a compiled query within a WEBASSEMBLY engine in
Section 6. We conduct a comparison to related work in Section 7
and present our experimental evaluation in Section 8. Section 9
concludes our work.

2 A NEW ARCHITECTURE FOR COMPILING
QUERY ENGINES

We begin by motivating the need for an architectural simplifi-
cation of query engines. We then propose our architecture and
discuss pros and cons. In Figure 2a we present an overview of
the architectures of prominent compiling query engines.

2.1 Other Architectures

HyPER — Although the very first relational database system,
System R, already compiled queries to machine code [10], com-
piling queries only really became maintainable with the use of a
compilation framework, such as LLVM used in HYPER [32]. The
original architecture of HYPER is shown in the second column
of Figure 2a. HYPER translates the QEP with its own compiler to
LLVM IR, the intermediate representation (IR) of LLVM. LLVM
provides a large set of optimization passes that can be applied to
the IR, potentially transforming the IR and increasing program

efficiency. HYPER applies a fixed, handpicked subset of LLVM’s
optimization passes [32]. This subset was chosen such that opti-
mization time is balanced with optimization gain. After applying
the optimization passes to the IR, HYPER runs LLVM’s machine
code generation to obtain executable code. HYPER then runs this
code on the hardware.

HYPER w/ adaptive execution — Potentially long-running com-
pilation with LLVM delays query execution. Therefore, Kohn et al.
propose in a follow-up work to extend the compilation pipeline
by interpretation and adaptively switching from interpreted to
compiled execution as soon as compilation completes [25]. This
architecture is shown in the first column of Figure 2a and is
an extension of the original architecture of HYPER. It uses the
same compiler to translate QEPs to LLVM IR. At this point, there
are three paths to proceed with. The first path H1 translates the
LLVM IR with their bytecode generator to LLVM bytecode, an IR
developed by the authors that is similar to LLVM IR yet optimized
for interpretation. This LLVM bytecode is then interpreted by
their bytecode interpreter. The second and third path, Hz and H3,
both rely on the original architecture of HYPER: H2 directly trans-
lates the LLVM IR to machine code, producing an “00” executable.
H3 incorporates LLVM optimizations, eventually producing an
“02” executable. While the query is being executed by interpre-
tation of the LLVM bytecode, the LLVM IR is optimized and
compiled to machine code in the background. Once this process
completes (and the query has not yet terminated), the system
switches from interpreted to compiled execution. Switching is
enabled by morsel-wise execution [28].

UMBRA — Although the architecture of HYPER with adaptive
execution reduces query latency without sacrificing performance
for long-running queries, initial interpretation is still slow and
compilation with LLVM takes relatively long. This observation
lead to another follow-up work by Kersten et al., in which the
authors drop interpretation entirely in favor of fast JIT com-
pilation [23]. This architecture, shown in the third column of
Figure 2a, is implemented in UMBRA. In this architecture, the
QEP is first translated by Tipy TUPLEs into their own Umbra IR.
UMBRA provides two compilation paths, U1 and U2, for this IR. U1
translates the IR directly to machine code with their JIT compiler
FLYING START. This compiler performs only a fixed amount of
passes over the IR, employs only a few fast optimizations, and
generates slightly optimized “O1” machine code. Its purpose is
to produce machine code fast while exploiting some potential for
optimization. U2 translates the UMBRA IR further to LLVM IR and
follows the LLVM compilation pipeline as in HYPER, eventually
producing a fully optimized “O2” executable. Similar to HYPER
with adaptive execution, UMBRA uses morsel-wise execution to
switch from the code produced by FLYING START to the fully
optimized code produced by LLVM.

Criticism. The original design of HYPER is clean and simple:
use an existing compilation framework to compile QEPs to effi-
cient machine code. However, the choice for LLVM introduces
the deficiency of long compilation times delaying execution. Both
HYPER with adaptive execution as well as UMBRA work around
this deficiency by introducing an alternative, much faster path to
begin query execution and combine this with adaptively switch-
ing to optimized code when available. By inspecting our overview
in Figure 2a, we can observe the sheer engineering effort that
both systems undertake to enable this alternative path. We argue
that neither approach will find wide-spread adoption as both
require expert knowledge in interpreter and compiler design as

well as long development times that prevent wide-spread adop-
tion. We therefore present a new architecture, that is as clean
and simple as the original architecture of HYPER, yet brings the
same benefits as UMBRA.

2.2 Our Architecture

Requirements — To make justified decisions for our architec-
ture, we first establish a common notion of our requirements:
(1) We want to minimize the latency of query execution. (2) At
the same time, we want to maximize the throughput of long-
running queries. (3) Any kind of optimization should not add
to the latency, meaning that optimization must be interweaved
with execution. (4) Rather than solving (1)-(3) ourselves, we want
to build on existing infrastructure.

Towards a solution — (1) To minimize latency of query exe-
cution, we can use interpretation or fast compilation of QEPs.
(2) To increase throughput, we can apply crucial optimizations
when compiling, e.g. register allocation. (3) To avoid optimization
delaying query execution, optimization and query execution can
happen in parallel. Query execution should switch to execution
of the optimized code as soon as it becomes available. To increase
adaptivity, optimizations should be applied on a fine granule:
rather than waiting for the entire QEP to be optimized, we can
compile and optimize individual pipelines and immediately make
use of the optimized code. (4) Existing infrastructure providing
the desired traits comes in the shape of JIT compilation frame-
works or entire engines, controlling compilation, execution, and
re-optimization.

Implementation — With a suitable JIT infrastructure at hand,
the architecture of the query engine becomes surprisingly sim-
ple: translate the QEP to the interchange format and submit it
to the infrastructure implementing (1)-(3) for execution. To our
satisfaction, there is a plethora of projects implementing require-
ments (1)-(3) in an off-the-shelf engine. We give an overview of
available projects and potential interchange formats in Section 7.
Our choice for implementing this architecture is as follows: We
translate QEPs to WEBASSEMBLY and delegate execution to the
V8 engine. V8 is Google’s JavAScrIPT and WEBASSEMBLY engine
and it fulfills all our aforementioned requirements. The fourth
column of Figure 2a shows how V8 embeds into our proposed
architecture. V8 provides two compilation tiers: fast compila-
tion with LIFTOFF [19] and optimizing compilation with TUR-
BOFAN [6]. Although initially WEBASSEMBLY is compiled with
LirTOFF to quickly start execution, V8 gradually replaces code
during execution by optimized code produced by TURBOFAN as
soon as it becomes available [19, 34]. V8 hence not only com-
piles WEBASSEMBLY but also takes care of adaptive execution.
V&’s LirToFF fulfills the same purpose as UMBRA’s FLYING START
while V8’s TURBOFAN can be seen as an optimizing compiler
like LLVM with optimization passes, yet it is designed for a JIT
environment and hence much faster. While UmBRA has to im-
plement and steer switching from non-optimized to optimized
code, we can rely on V8 gradually optimizing the code during
execution. Further, V8 provides fine-granular control over which
optimizations to perform, whether to optimize adaptively during
execution, and whether to enable the LIFTOFF compiler. One
more benefit particular to V8 is that it compiles WEBASSEMBLY,
which is an excellent interchange format between QEP and V8
as we elaborate in Section 3. We provide a summarized feature
comparison in Figure 2b.

3 WEBASSEMBLY

Having a fast JIT compiler is inevitable to reducing latency in a
compiling query engine, but it is certainly not enough. A (JIT)
compiler takes as input the program, encoded in text or some
kind of bytecode. We hence must translate the QEP to a suitable
format accepted by the compiler. This step adds to the overall
compilation time. It is therefore necessary to choose a fitting
interchange format to enable fast translation of QEPs.

WEBASSEMBLY, or short Wasm, is “a low-level assembly-like
language with a compact binary format that runs with near-
native performance” [13]. Among the many high-level goals of
WEBASSEMBLY, we see three key features that make it the instru-
ment of choice for JIT compiling QEPs. The first key feature is
that WEBASSEMBLY is size and load-time efficient, allowing for
fast code generation, fast JIT compilation to machine code, and
resource-friendly caching of already compiled code [17, 21]. Sec-
ond, WEBASSEMBLY is a virtual instruction set architecture (ISA)
and therefore hardware independent and embeddable in many
environments. Third, WEBASSEMBLY can be compiled to execute
at near native speed [21] and make use of modern hardware
capabilities, e.g. SIMD [6]. Many WEBASSEMBLY engines offer
debugging interfaces. The V8 engine provides an interface using
the Chrome DevTools protocol over web socket. A developer
can launch Google Chrome and connect to the V8 instance. The
developer then has access to a wide range of debugging tools,
including breakpoints, watchpoints, and memory inspection.

Although the name “WebAssembly” suggests that it was de-
veloped for the web, WEBASSEMBLY is primarily a virtual ISA
that can be embedded in an execution environment. We highly
recommend to the curious reader the work of Haas et al. [17],
where the design of WEBASSEMBLY is elaborated in great detail
and advantages over other low-level IRs are discussed.

3.1 Embedding WEBASSEMBLY

Despite its many benefits, WEBASSEMBLY comes with two signif-
icant limitations. The first limitation is that WEBASSEMBLY does
not provide a standard library. Data structures like hash tables,
algorithms like sorting, and even basic routines such as memcpy
are not available out of the box. The second limitation is that
WEBASSEMBLY does not support generic programming. Hence,
we cannot simply implement a library with generic algorithms
and data structures ourselves. However, we shall work around
these limitations by building on the ability to rapidly generate
and compile WEBASSEMBLY. We solve the entire problem of not
having a library by doing ad-hoc code generation: Every algo-
rithm and data structure required by a QEP is generated during
compilation. We do this in such a way, that we provide the con-
crete types of generic components, as required in the QEP, to the
code generation process, which directly produces monomorphic
code. Our approach allows us to rapidly generate code that is
already fully inlined and specialized for the data types used in
the QEP. We are able to achieve performance improvements that,
in some cases, can have a tremendous impact. We elaborate our
approach of ad-hoc library code generation in Section 5.

4 COMPILING SQL TO WEBASSEMBLY

In this section, we elaborate how to compile QEPs of SQL queries
to WEBAssEMBLY. We dissect a QEP into pipelines, for which we
generate code in topological order. We briefly revisit the pipeline
model in Section 4.1. In Section 4.2 we sketch how we compile
simple relational operators to WEBASSEMBLY. In Section 4.3 we

Listing 1 Example query to demonstrate the pipeline model.

1 SELECT R.x, MIN(S.x)
2 FROM R, S

5 WHERE R.x < 42 AND R.id = S.rid
1 GROUP BY R.x;

Figure 3: A QEP for the query in Listing 1, containing three
pipelines enumerated in topological order.

explain how we compile complex operators without relying on an
existing library by integrating ad-hoc generation of algorithms
and data structures into the compilation process.

4.1 Pipeline Model

A QEP is - in its most essential form — a tree with tables
or indexes at the leaves and relational operators at the inner
nodes.! Figure 3 shows a QEP for the query in Listing 1. The
edges between nodes of the tree point in the direction of data
flow.

The tree structure of a QEP can be dissected into pipelines [9].
A pipeline is a linear sequence of operators that does not require
materialization of tuples. To identify the pipelines of a QEP, we
hence must identify all operators that require materialization,
named pipeline breakers [32]. The most common pipeline breakers
are grouping, join, and sorting; table scan, index seek, selection,
and projection are not pipeline breakers.

In Figure 3, we have colored and enumerated the three
pipelines of the QEP. Pipeline 1 scans table R, selects all tuples
where R.x < 42, and inserts all qualifying tuples into a hash table
for the join. Pipeline 2 scans table s and probes all tuples against
the hash table constructed by pipeline 1. Every pair of tuples
from R and s that satisfies the condition R.id = s.rid is joined
and inserted into another hash table where groups of rR.x are
formed. Pipeline 3 iterates over these groups and performs the
final projection.

After dissecting the QEP into pipelines, each pipeline is com-
piled separately. However, we must order the pipelines such
that all data dependencies of the QEP are satisfied. For exam-
ple, pipeline 3 iterates over all groups produced by grouping.
Hence, pipeline 2 that forms those groups must be executed be-
fore pipeline 3. By topologically sorting the pipelines we compute
an order that satisfies all data dependencies in the QEP.

The pipeline model allows us to dissect a QEP into linear
sequences of operators that process tuples without need for in-
termediate materialization. The pipeline model does not dictate
whether to push or pull tuples, whether to process tuples one at
a time or in bulk, or whether to execute the QEP by compilation
or interpretation. In this work, we compile the pipelines of a QEP

The authors are aware that a QEP need not strictly be a tree and in some situations
a representation as directed acyclic graph is desirable [33].

such that a single tuple is pushed at a time through the entire
pipeline until it is materialized in memory.

4.2 Compiling Simple Operators

To compile simple operators to WEBASSEMBLY, we follow the
approach of Neumann [32] , i.e. we generate data-centric code.
We do not yet implement advanced code generation techniques,
such as relaxed operator fusion [30] or access-aware code gen-
eration [12]. However, the approach of Neumann [32] does not
work for complex operators, as we will outline in Section 4.3.
Generating WEBASSEMBLY code is very similar to generating
LLVM code. In the following, we briefly sketch how we compile
simple operators of a QEP.

Table scan, index seek, and pipeline breakers — The start
of a pipeline — which is either a table scan, an index seek, or a
pipeline breaker - is translated to a loop construct. For a table
scan, we emit code to access all tuples of the respective table. For
an index seek, we emit code to iterate over all qualifying entries
in the respective index. For a pipeline breaker, e.g. grouping, we
emit code to iterate over all materialized tuples, e.g. groups. The
remainder of the pipeline is compiled into the loop’s body.
Selection — A selection is compiled to a conditional branch. It
is debatable whether to prefer short-circuit evaluation. For “sim-
ple” predicates, short-circuit evaluation is likely a bad choice:
it introduces a conditional branch that unnecessarily stresses
branch prediction [42]. It may further lead to a conditional load
from memory, which may negatively impact prefetching [22].
For “complex” predicates, short-circuit evaluation likely pays
off: a conditional branch can bypass costly evaluation of the
right hand side of a logical conjunction or disjunction [39]. This
transformation is a part of if-conversion [4]. We perform the afore-
mentioned transformations during query optimization and before
compilation. This optimization relies on domain-specific knowl-
edge, e.g. predicate selectivities, that is inaccessible to the Wasm
compiler. We do not implement predication in this work: every
selection is compiled into one or more conditional branches.
Projection — The projection of an attribute or aggregate does
not require an explicit operation. The code necessary to access
the attribute’s or aggregate’s value has already been generated
when compiling the beginning of the pipeline. To compile the
projection of an expression, we compile the expression and assign
the result to a fresh local variable. In contrast to interpretation,
projecting attributes away is performed implicitly and requires
no further code. Because the attribute that is projected away is
not used further up in the QEP, no code using the attribute is
generated. The register or local variable holding the attribute’s
value is automatically reclaimed during compilation to machine
code [7].

4.3 Compiling Complex Operators

Compiling complex operators that need sophisticated algorithms
and data structures is particularly difficult in our setting, as we
cannot rely on an existing standard library providing generic im-
plementations. We solve this deficiency by the ad-hoc generation
of required algorithms and data structures during compilation of
the QEP. We will explain this in detail in Section 5.
Hash-based Grouping & Aggregation — Hash-based grouping
is a pipeline breaker: the incoming pipeline to the grouping oper-
ator assembles the groups in a hash table and updates the group’s
aggregates. The pipeline starting at the grouping operator iterates
over all assembled groups as explained above.

An important distinction between our work and previous
work is how inserts and updates to the hash table are performed.
Previous work - including both interpretation- and compilation-
based execution - relies on the existence of a pre-compiled library
that provides a hash table implementation [25, 27, 32]. There,
operations on the hash table must use a type-agnostic interface,
ruling out effective implementations of certain has table designs.
The major issue is that the type of a hash table entry is unknown
at the time when the library is compiled. To lookup a key, the
key’s hash is required. The hash can be computed outside of
the library and the computed hash value can be passed through
the hash table’s interface, as done by Neumann [32]. However,
hash collisions must be resolved and duplicates must be detected.
Because of the type-agnostic interface, the hash table has no
means to compare two keys. Hence, a callback function for pair-
wise comparison is passed to the hash table’s lookup function.
Note, that looking up n keys requires at least n such callbacks!
The situation gets worse if the hash table must be able to grow
dynamically. To grow a hash table, all elements of the table must
be rehashed. Again, because the hash table is type-agnostic, it has
no means to compute the hashes. Hence, a callback function for
hashing must be provided in addition to the comparison callback
or the computed hash values must be stored within the hash
table. Another downside of using a pre-compiled library is that
calls to the library cannot be inlined at the callsite: every access
to the hash table requires a separate function call.

We resolve these issues by generating and JIT compiling the
code for the hash table during compilation of the QEP. Although
sounding expensive and prohibitive, we show in Section 8 that
generating and compiling WEBASSEMBLY is affordable at run-
ning time. We explain the generation of library code in detail in
Section 5.

Simple Hash Join — A simple hash join is a pipeline breaker for
one of its inputs: the incoming pipeline, by convention the left
subtree of the join, inserts tuples into a hash table. The pipeline
of the join probes its tuples against that hash table to find all join
partners. The same distinction between our work and previous
work as for Hash-based Grouping & Aggregation applies here.
To avoid artificial constraints on hash table design and to avoid
issuing a function call per access to a hash table, we generate
and JIT compile the required hash table code during compilation
of the QEP. This approach is elaborated in Section 5.

Sorting — Sorting is a pipeline breaker and very similar to Group-
ing & Aggregation. Before the sorting operator can produce any
results, all tuples of the incoming pipeline must be produced and
materialized. After the incoming pipeline has been processed
entirely, the sorting operator can output tuples in the specified
order.

We implement the sorting operator by collecting all tuples
from the incoming pipeline in an array and sorting the array
with QuicksoRrT. The way we integrate sorting into the compiled
QEP is an important distinction between our work and previous
work. In previous work that performs compilation, a sorting al-
gorithm already exists as part of a pre-compiled library that is
invoked to sort the array. The interface to this sorting algorithm
is type-agnostic, i.e. the sorting algorithm does not know what
it is sorting. In order to compare and move elements in the ar-
ray, additional information must be provided when invoking the
sorting algorithm. For comparison-based sorting, the size of an
element in the array and a function that computes the order of
two elements must be provided. This is very well exemplified
by gsort from LiBC. This design leads to two severe performance

issues. First, because the size of the elements to sort is not known
when the library code is compiled, a generic routine such as
memcpy must be used to move elements in the array. This may
result in suboptimal code to move elements or even an additional
function call per move. Additionally, values cannot be passed
through registers and must always be read from and written to
memory, obstructing optimization by the compiler. Second, to
compute the order of two elements an external function must be
invoked. This means, for every comparison of two elements the
sorting algorithm must issue a separate function call. (To sort n
elements, at least © (n logn) such calls are necessary!)

When the QEP is being interpreted, e.g. in the vectorized ex-
ecution model, similar problems emerge. Although tuples need
not be moved if an additional array of indices is used, the sorting
algorithm must delegate the comparison of two tuples to the in-
terpreter, where the predicate to order by is dissected into atomic
terms that are evaluated separately. This leads to significant in-
terpretation overhead at the core of the sorting algorithm.

We resolve the aforementioned issues by generating and JIT
compiling the library code during compilation of the QEP. Our
generated sorting algorithm is precisely tuned to the elements to
sort and the order to sort them by. In particular, the comparison
of two elements is fully inlined into the sorting algorithm. We
explain this approach in detail in Section 5.

5 AD-HOC LIBRARY CODE GENERATION

In Section 3.1 and Section 4.3 we already motivated ad-hoc gen-
eration of specialized library code during compilation of a QEP.
In this section, we elaborate our technique along the example of
generating specialized QuicksorT. While other building blocks
of QEPs, e.g. hash join, would also suit as interesting example of
our approach, we choose QUICKSORT for two reasons: (1) QUICK-
SORT is a recursive algorithm. We demonstrate that our ad-hoc
generation is not limited to mere code fragments but can gener-
ate entire recursive functions ad-hoc. (2) At its core, QUICKSORT
repeatedly performs pair-wise comparison of elements when par-
titioning the data set. This part of the algorithm benefits most
from specialization to a particular element type and sort order,
demonstrating the significant impact specialization can have on
performance (cf. Section 8.2). We begin with partitioning and
inlined comparison of elements before we explain how we gen-
erate QUICKSORT. Note that we need not generate code for an
entire library (e.g. L1Bc or STL) but we generate code for only
those routines required by the QEP. Therefore, ad-hoc generation
must be implemented only for those parts of libraries used by
QEPs.

5.1 Conceptual Comparison

Before diving into the code generation example, let us reconsider
our approach on a conceptual level and compare it with alterna-
tives. A problem that is inherent in all query execution engines
is that their supported operations must be polymorphic. Joins,
grouping, sorting, etc. must be applicable to attributes of any type
and size. We aim to provide this polymorphism at query compila-
tion time by generating specialized library code. To understand
how other systems solve this task, let us look at state-of-the-art
solutions.

Vectorized Interpretation — In the vectorized processing
model, operations are specialized for the different types of vec-
tors. In Listing 2, we provide an example for the evaluation of a

Listing 2 Vectorized processing example. A selection vector is
successively refined to compute R.x < 42 AND R.y > 13.

/*x Create a fresh vector with indices

* from @ to VECTOR_SIZE - 1. x/

sel® = create_selection_vector (VECTOR_SIZE);
/* Evaluate LHS of conjunction. x/

sell = cmp_lt_i32_imm(sel®, vec_R_x, 42);

6 /* Evaluate RHS of conjunction. =/

7 sel2 = cmp_gt_i64_imm(sell, vec_R_y, 13);

selection with a conjunctive predicate. The initial selection vec-
tor selo is successively refined by calls to vectorized comparison
functions cmp_x and eventually sel2 contains all indices where the
selection predicate is satisfied. A vectorized query interpreter
executes a QEP by calling these vectorized functions and manag-
ing the data flow between function calls. To achieve short-circuit
evaluation of the condition, the selection vector sel1 is passed to
the second comparison, such that the right-hand side of the con-
junctive predicate is only evaluated for elements that also satisfy
the left-hand side. In a compiling setting, short-circuit evaluation
is usually implemented as a conditional branch. In the vectorized
processing model, that control flow is converted to data flow. Con-
ditional control flow can benefit from branch prediction, which
works well in either case when the selectivity is very high or
very low. However, when the control flow is converted to data
flow, the benefit on low selectivities is lost [22, 37, 42], as we
exemplify in our example in Listing 2. Assume that the left-hand
side of the condition is barely selective. Although the outcome of
evaluating the left-hand side can be well predicted, evaluation of
the right- hand side in line 7 can only start once the comparison
in line 5 completes. Hence, this design completely eliminates
the processors ability to predict the outcome of evaluating the
left-hand side and executing the right-hand side unconditionally
and out of order, as opposed to how it would be in a data-centric
setting. A drawback of interpretation is that operations must be
specialized and compiled ahead of time. It is infeasible to pro-
vide vectorized operations for arbitrary expressions, as there are
infinitely many. Therefore, the interpreter dissects expressions
into atomic terms for which a finite set of vectorized operations
is pre-compiled. For our example in Listing 2, this means that
the interpreter must always evaluate one side of the conjunction
after the other and cannot evaluate both sides at once.

Linking with pre-compiled library — In a compilation-based
processing model, e.g. HYPER, every operation in the QEP is com-
piled to a code fragment. The produced code is specific to the
types of the operation’s operands. Arbitrarily complex expres-
sions are compiled directly rather than taking a detour through
pre-compiled functions for expression evaluation, like in the inter-
pretation model. Thereby, the compiler can choose to implement
short-circuit evaluation by conditional control flow.

The biggest drawback of compiling QEPs is the time spent com-
piling. While direct compilation to machine code could be done
rapidly, the produced code would certainly be of poor quality.
Therefore, compilation-based systems employ compiler frame-
works like LLVM to perform optimizations on the code. While
these optimizations can greatly improve the performance of the
code, they require costly analysis and transformation. Hence,
compilation of queries can easily take more than a hundred mil-
liseconds [25].

To reduce the amount of code to compile, recurring routines
like hash table lookups or sorting are pre-compiled and shipped
in a library. During compilation of a QEP, when an operation
can be delegated to a pre-compiled routine, the compiler simply

Listing 3 Demonstration of a compilation-based processing
model with calls to a pre-compiled library. Every insertion into
the hash table requires a separate function call.

/* Initialize hash table. x/
HT *ht = lib_HT_create();
/* Iterate over all rows of table R. x/
for (auto row : tbl_R) {
/* Evaluate selection predicate. x/
if (row.x < 42 and row.y > 13) {
/* Compute hash of R.id. =*/

G o gs e o

8 auto hash = ... row.id ...;
9 /* Insert into hash table. =/
10 char *ptr = lib_HT_insert(ht, hash, 8);
11 *(int*) ptr = row.id; // key
12 *(int*)(ptr+4) = row.x; // value
13 }
14}
Data g
>
WEBASSEMBLY Result setE
QEP_ | WEBASSEMBLY code V8
—> . >
Compiler
type specialized algorithms
information and data structures

WebAssemsry | [© inlined HT insertion
Codegen « specialized gsort function

Figure 4: Compilation with on-demand code generation
in mutable. QEPs are compiled to WEBASSEMBLY and dis-
patched to V8. Specialized code is generated on demand
for algorithms and data structures required by the QEP.

produces a respective function call to the library. This is a trade-
off between compilation time and running time and the biggest
drawback of this approach. Function calls to a pre-compiled li-
brary prevent inlining and obstruct further optimization, thereby
potentially leading to sub-optimal performance. We demonstrate
this in Listing 3, where every insertion into a hash table requires
a separate function call. The library code for probing the hash
table can be compiled and optimized thoroughly ahead of time.
Because the size of a hash table entry is unknown when the
library is compiled, the size must be provided at running time
when inserting an entry. In the example, the hash table must
allocate 8 bytes per entry to store R.id and R.x and it is the task
of the caller to assign those values to the entry.

Full compilation — In this approach, code for the entire QEP
with all required algorithms and data structures is generated and
compiled just in time. By generating the code just in time, it
is possible to produce highly specialized code, target particular
hardware features, and enable holistic optimization. One example
for full compilation is template expansion, as done in the HIQUE
system [27]. HIQUE provides a set of generic algorithms and data
structures that are instantiated and compiled to implement the
QEP. Another example is code generation via staging, as done
in LEGOBASE. Here, metaprogramming is used to write a query
engine in Scala LMS, that when partially evaluated on an input
QEP outputs specialized C code that implements the query [24].
While full compilation can achieve the highest possible through-
put, both HiQUE and LEGOBASE take considerable compilation
time with hundreds of milliseconds for single TPC-H queries.

5.2 Our Approach: JIT Code Generation

Full compilation is very similar to our approach of generating
required library routines just in time and JIT compiling the QEP.
The key distinction is how code is generated. Previous work
generates code in a high-level language. This code must then
go through parsing and semantic analysis before it is translated

Listing 4 Pseudo code for the generation of specialized code that
implements HOARE’S PARTITIONING.

Listing 5 Pseudo code for the generation of code that compares
two elements based on a specified order.

1: function PArTITION(0rder, begin, end, pivot)
2 Emrr(l « begin)

3 EMIT(r < end)

4: Emrr(while [< r)

5: EmrtSwar(l, r — 1)

6: cl « EmrtCoMPARE(order, 1, pivot)

7 cr < EMITCOMPARE(order, pivot, r — 1)
8 Emir(l « I +cl)

9: EMIT(r < r — cr)
10: Emrt(end while)
11: return [

12: end function

to a lower level IR where optimizations are performed before
executable machine code is produced. Going through the entire
compiler machinery takes a lot of time. Our approach, depicted
in Figure 4, bypasses most of these steps. We generate specialized
algorithms and data structures directly in WEBASSEMBLY. By
picking a suitable WEBASSEMBLY engine, e.g. V8, we fulfill all
the requirements given in Section 2.2. Our approach is able to
produce highly specialized algorithms and data structures and
enables holistic optimization without the drawback of long code
generation and compilation times.

5.3 Code Generation by Example

To provide the reader with a better understanding of how we
generate library code just in time, let us exemplify our code gen-
eration along the example of QuIcksorT. We build the example
bottom up, beginning with code generation for partitioning and
the comparison of two elements before we explain code genera-
tion of the recursive QUICKSORT algorithm. We use pseudo code,
as it is easier to read and understand than Wasm and because our
approach of ad-hoc code generation is independent of a particular
language.

HOARE’S PARTITIONING scheme — HOARE’S PARTITIONING
scheme creates two partitions from a sequence of elements based
on a boolean predicate such that all elements in the first parti-
tion do not satisfy the predicate and all elements in the second
partition satisfy the predicate. We apply HOARE’S PARTITIONING
in our generated QUICKSORT algorithm, that in turn is used to
implement sorting of tuples. In our setting, the sequence of tuples
to partition is a consecutive array.

We provide pseudo code for the generation of specialized
partitioning code in Listing 4. The function PARTITION takes four
parameters: the order is a list of expressions to order by, begin
and end are variables holding the address of the first respectively
one after the last tuple in the array to partition, and pivot is a
variable holding the address of the pivot to partition by. The pivot
must not be in the range [begin, end). First, the algorithm copies
the values of begin and end by introducing fresh variables [and
r in lines 2 and 3 and then emitting code that assigns the value
of begin to I in line 4 and the value of end to r in line 5. Next,
in line 6, a loop header with the condition I < r is emitted. The
code emitted thereafter forms the loop body. In line 7, EMiTSwaP
is called to emit code that swaps the tuples at the addresses I and
r — 1. Note that this is a function call during code generation. The
call will emit code directly into the loop body, as if inlined by an
optimizing compiler, and there will be no function call during
execution of the generated code. In lines 8 and 9, EMITCOMPARE
is called to emit code that compares the tuples at addresses [
and r — 1 to the tuple at address pivot according to the order
specified by order. Each call returns a fresh boolean variable that
holds the outcome of the comparison. Just like EMITSwAP, calls

1: function EmirCompARrE(order, 1, r)

2 EmIT(0 « 0)

3 for each expr in order do

4: ol « CompiLE(expr, 1)

5: or < CoMPILE(expr, 1)

6: switch type(expr) do

7 case int

8: Emrr(lt « ol <int or)
9: EmIT(gt — vl >in 0r)
10: case float
11: Emrt(lt « ol <goa vt)
12: EmIT(gt 0l >qoqa 01)
13: >cases for remaining types
14: end switch
15: EMIT(0 ¢ 2 - 0 +gt — It)
16: end for
17: EMIT(Cc < v < 0)
18: return ¢

19: end function

to EMITCOMPARE emit code directly into the loop body without
the need for a function call in the generated code. The value of
variable cl will be true if the tuple at address [compares less than
the tuple at address pivot w.r.t. the specified order. Line 10 emits
code that advances [to the next tuple if ¢l is true, otherwise [is not
changed. Similarly, line 11 emits code to advance r to the previous
tuple if cr is true. This is a means of implementing branch-free
partitioning. In line 12, the loop body for the loop emitted in
line 6 is finished. Eventually, PARTITION returns the variable [,
which will point to the beginning of the second partition once
the loop of line 6 terminates.

The code presented in Listing 4 looks almost like a regular
implementation of partitioning. However, the function emits code
that will perform partitioning. An important part of partitioning,
that we skipped in Listing 4, is how the code to compare two
tuples based on a given order is generated. Therefore, we also
provide pseudo code for EMITCOMPARE in Listing 5.

First, EMITCOMPARE creates a fresh variable v in line 2 and
initializes it to 0 in line 3. Then, in line 4, the function iterates
over all expressions in order. The call to COMPILE in line 5 emits
code to evaluate expr on the tuple pointed to by I and returns a
fresh variable holding the value of the expression. Analogously,
line 6 evaluates expr on the tuple pointed to by r. Next, type-
specific code to compare the values vl and or of the evaluated
expression is emitted. Because the particular code to emit depends
on the type of expr, line 7 performs a case distinction on the type.
This case distinction is performed during code generation and the
generated code will only contain the emitted, type-specific code.
In case the expression evaluates to an int, lines 9 and 10 emit
code to perform an integer comparison of vl and vr. The cases
for other types are analogous. After emitting type-specific code
for the comparison of v and or, line 16 emits code to update v
based on the outcome of the comparison. After generating code
to evaluate all expressions in order and updating v accordingly,
lines 18 and 19 introduce a fresh boolean variable ¢ that will be
set to v < 0, which evaluates to true if the tuple at [is strictly
smaller than the tuple at r.

To put it all together, let us exercise an example. We invoke
PARTITION with the order [R.x + R.y, R.z], begin ‘b’, end ‘¢’, and
pivot ‘p’. The generated code is given in Listing 6. Initially, in
lines 1 and 2, the addresses of the first and one after the last tuple
are stored in fresh variables. Then the loop in line 3 repeats as
long as pointer p; points to an address smaller than p,. Lines 5 to 7
show the code produced by EMITSwap, that swaps two tuples
using a temporary variable. In lines 9 to 20, the tuple at p; is
compared to the pivot according to the specified order. Variable

Listing 6 Generated partitioning code for the order [R.x +
R.y,Rz].

Input: b, e, p
Output: p;
1: varp; «<b
2: var p, «e
3: while p; < p, do
4: > EMITSWAP(p;, p, 1)
5: var Opmp < *pj
6: wpp — #(pr — 1)
7: #(pr — 1) « Otmp
8

>Initialize pointers to the first and
>one after the last tuple, respectively.

>Use temporary variable
>to swap tuples
>at p; and pr — 1.

> EmiTComPARE([R.x + R.y, R.z], p1, p)

9: Vvar o pivor < 0

10: var u; < p1.X +int pI1.Y >CompPILE(RR.x + R.y, p1)
11: var Upiyor <= p-X +int p-Y >CompPILE(R.x + R.y, p)
12: var oy < 0 <int Upivot

13: Var Ug; <= 0] >int Upivot

14: Ul pivot €= 2 * Ul pivot + Ugt — Ul

15: var vy < p;.z >CompiLE(R.z, p1)
16: Vvar Upjyor <= p.Z >ComPILE(R.z, p)
17: var vy <= 0] <int Upivot

18: Vvar Ug <= 0] >int Upivot

19: Ul pivot €= 2 * Ul pivot + Ugt — Ul
20: var g < U pivor < 0
21: > EMiTCoMPARE([R.x + R.y, R.z], p, pr — 1)
22: >Code omitted for brevity.
23: var e < Upivotr < 0
24: P1— pr+og >Advance left cursor.

25: DPr < Pr — Uer >Advance right cursor.

26: end while

Listing 7 Pseudo code to generate specialized QUICKSORT.

1: function QUIicksorT(order)
2 Emit(function gsort(begin, end))
3 Emrt(while end — begin > 2)
4: EMIT(mid < begin+ (end — begin) /2)
5: m < EMITMEDIANOF3(begin, mid, end — 1)
6: EmITSWAP(begin, m)
7 mid < PARTITION(order, begin + 1, end, begin)
8: EmrtSwap(begin, mid — 1)
9: Emrt(if end — mid > 2)
10: Emrt(qsort(mid, end))
11: Emrt(end if)
12: Emit(end < mid — 1)
13: Emrt(end while)
14: Emrt(end function)
15: end function

v, is true if the tuple at p; compares less than the pivot, false
otherwise. Analogously, the tuple at p, — 1 is compared to the
pivot. To keep the example short and because the code is very
similar, we omit this code and only show a place holder in line 22.
At the end of the loop, in lines 24 and 25, the pointers p; and p,
are advanced depending on the outcome of the comparisons.
The generated code will partition the range [b, e) such that
the first partition contains only tuples that compare less than p
and the second partition contains only tuples greater than or
equal to p, w.r.t. the specified order. Note that the generated
code is not a function. Instead, this code can be generated into a
function where partitioning is needed. Hence, the entire code for
partitioning will always be fully inlined and specialized for the
order to partition by.
QUICKSORT — QUICKSORT sorts its input sequence by recursive
partitioning. In our implementation of QUICKSORT, we compute
the pivot to partition by as a median-of-three. With our code
generation for partitioning at hand, generating QUICKSORT is
relatively simple. We provide pseudo code in Listing 7. Line 2
defines a new function gsort, line 3 emits a loop that repeats as
long as there are more than two elements in the range from begin
to end. Inside this loop, lines 4 to 7 emit code to compute the
median of three and bring the median to the front of the sequence
to sort. Line 8 emits the code to partition the sequence begin + 1
to end using as pivot the median of three. After partitioning, the
median must be swapped back into the partitioned sequence,
which is done by line 9. Line 10 checks whether to recurse into

the right partition. Line 11 emits a recursive call to sort the right
partition with gsort. Afterwards, in line 13, code is emitted to
update end to the end of the left partition.

We can see that by executing our QUICKSORT code generation,
we obtain a specialized, fully inlined gsort function that can
be called to sort a sequence by the order specified during code
generation.

6 EXECUTING WEBASSEMBLY IN A
DATABASE SYSTEM

In the preceding sections, we explained how to compile a QEP
and its required libraries to WEBASSEMBLY. In this section, we
elaborate how we execute WEBASSEMBLY in an embedded engine.
Although this approach works with any embeddable engine, we
describe the process of embedding and executing WEBASSEMBLY
in V8.

The WEBASSEMBLY specification requires that each module -
think of translation unit in C - operates on its personal memory.
This memory is provided by the engine, here V8. To execute a
compiled QEP inside the engine, all required data (tables, indexes,
etc.) must reside in the module’s memory. One way to achieve
this is by copying all data from the host to the module’s mem-
ory. However, this incurs an unacceptable overhead of copying
potentially large amounts of data before executing the QEP. An
alternative is to use callbacks from the module to the host to
transfer single data items on demand. For such a purpose, V8
allows for defining functions in the embedder that can be called
from the embedded code. However, such callbacks also incur a
tremendous overhead, because the VM has to convert parameters
and the return value from the representation in embedded code
to the representation in the embedder and vice versa. At the
time of writing, V8 provides no method to use pre-allocated host
memory as a module’s memory. Therefore, we patch V8 to add a
function for exactly that purpose: setModuleMemory() sets the mem-
ory of a WEBAsSEMBLY module to a region of the host memory.
While this function enables us to provide a single consecutive
memory region from the host to the module, it is not sufficient
to provide multiple tables or indexes (which need not reside in a
single consecutive allocation) to a module. The problem is that
WEBASSEMBLY - in its current version — only supports 32 bit ad-
dressing. Hence, we cannot simply assign the entire host memory
to the module. Instead, we are limited to 4 GiB of addressable
linear memory inside the module. In the following, we describe
pagination implemented with a technique named rewiring to
work around this limitation. However, we want to stress that
64 bit addresses in WEBASSEMBLY are on the way and pagination
will become obsolete eventually.

6.1 Accessing Data by Rewiring

Rewiring [41] allows for manipulating the mapping of virtual
address space to physical memory from user space. In particular,
it enables us to map the same physical memory at two distinct vir-
tual addresses. We exploit this technique to have data structures
residing in distinct allocations appear consecutively in virtual
address space and then use this address range as the module’s
memory.

We exemplify this technique in Figure 5. Assume a query
accessing two tables A and B. The tables reside in completely
independent memory allocations, hence there is no single 4 GiB
virtual address range that contains both A and B entirely. Further,
the query computes some results and we therefore allocate 1 GiB

1GiB

(Host Memory l rewiring)
Table A (1 GiB)

Virtual Ad-
dress Space

Table B (5 GiB)
0x7Ffd 8000 6000 ;

4GiB >—<-’ z
2GiB

ox7ffe 7fff FFff:

Result Set (1 GiB)

1GiB

r

V38

(Module '

0x00000000:~ — T T T T T T T 7

~\ rewire_next_chunk(B)

SetModuleMemory ()
(our patched V8)
=4

|
|
|
I
4GiB | |
|
|
|
I

OxFIFFFfff: - - - — = =

Module Linear Memory
\ v
\ v
\ v

Figure 5: Example of mapping tables and output to a mod-
ule’s memory. The module can callback to the host to re-
quest mapping the next 2 GiB chunk of table B.

of memory to store the query’s result set. To give the module
access to all required memory, we first allocate consecutive 4 GiB
in virtual address space. Then we rewire table A, a portion of
table B, and the memory for the result set into the freshly allocated
virtual memory. Finally, we call setModuleMemory() with the freshly
allocated virtual memory. The module now has access to both
tables and can write its results to the memory allocated for the
result set. Note that table B is 5 GiB and cannot be rewired entirely
into the virtual memory for the module. To give the module access
to the entire table, we install a callback rewire_next_chunk() that
lets the host rewire the next 2 GiB chunk of table B, thereby
allowing the module to iteratively process entire B.

6.2 Result Set Retrieval

Similarly to how data is made available to the module, we use
rewiring to communicate the result set back to the host. As can
be seen in Figure 5, the module writes the result set to a rewired
allocation of 1 GiB. If the module produces a result set of more
than 1GiB, it produces the result set in chunks and issues a
callback in between to have the host process the current chunk
of results.

7 RELATED WORK

In addition to our motivation for using V8 and WEBASSEMBLY in
Section 2.2 and Section 3, respectively, we present in Section 7.1
JIT frameworks and engines that might be used alternatively. In
Section 7.2, we augment the comparison with related work that
is conducted throughout Section 2.1, Section 4.3, and Section 5.1.

7.1 JIT Frameworks & Engines

The idea to build query execution on top of a JIT engine oc-
curred as early as 1997 in the context of JIT compilation in the
Java VIRTUAL MACHINE (JVM) [11]. These thoughts were later
implemented in Java’s HoTSpoT VM [26] and are still being de-
veloped today in GRAALVM [35]. Let us have a quick look at
JIT compilers and engines we considered: MIR [29] provides an

IR with an interpreter and fast JIT compiler, however it is still
in early development by only a small community and does not
provide adaptive execution out of the box. LIBJIT [14] provides a
framework for on-demand JIT compilation and reoptimization.
However, it is lacking automation of adaptive execution and in-
lining. When we focus on executing WEBASSEMBLY, we have
access to a rich set of engines. For brevity, we only mention a
few examples: WASMER [43] is a feature-rich WEBASSEMBLY run-
time but does not provide efficient embedding. SPIDERMONKEY is
Mozilla’s JavaScripT and WEBASSEMBLY engine and quite similar
to Google’s V8. We chose V8 over SPIDERMONKEY because of its
better documentation and because it is written in C++, like our
database system mutable.

7.2 Query Execution

Interpretation. — Graefe [15] proposes a unified and exten-
sible interface for the implementation of relational operators
in VorLcANo, named iterator interface. Ailamaki et al. [3] ana-
lyze query execution on modern CPUs and find that poor data
and instruction locality as well as frequent branch mispredic-
tion impede the CPU from processing at peak performance.
Boncz et al. [8] identify tuple-at-a-time processing as a limiting
factor of the VoLcaNo iterator design, that leads to high inter-
pretation overheads and prohibits data parallel execution. To
overcome these limitations, Boncz et al. [8] propose vectorized
query processing, implemented in the X100 query engine within
the column-oriented MONETDB system. Menon et al. [30] build
on the vectorized model and introduce stages to dissect pipelines
into sequences of operators that can be fused. By fusing operators,
Menon et al. are able to vectorize multiple sequential relational
operators. Their implementation in PELOTON [36] shows that
operator fusion increases the degree of inter-tuple parallelism
exploited by the CPU.

Compilation. — Rao et al. [38] explore compilation of QEPs to
Java and having the JVM JIT-compile and load the generated
code. However, their approach sticks to the VoLcano iterator
model, restricting compilation from unfolding its full potential.
Follow-up work explores compiling QEPs to vectorized Java code
in Spark [2]. Potential compilation overheads are not discussed.
Schiavio et al. [40] and Grulich et al. [16] both recently explored
the support of polyglot UDFs. Both approaches build on TRUF-
FLE, GRAALVM’s compiler-compiler. We believe the JAVAScRIPT
+ WEBASSEMBLY eco system could very well support polyglot
programming, too. There already exists a wide range of tran-
spilers, e.g. TRANSCRIPT translates PYTHON to JAVASCRIPT or
EMSCRIPTEN compiles LLVM-based languages to WEBASSEMBLY.
With HIQUE, Krikellas et al. [27] propose query compilation to
C++ code by dynamically instantiating operator templates in
topological order. They report query compilation times in the
hundreds of milliseconds. Neumann [32] presents compilation of
pipelines in the QEP to tight loops in LLVM. Complex algorithms
are implemented in C++ and pre-compiled, to be linked with and
used by the compiled query. With the implementation in HYPER,
Neumann achieves significantly reduced compilation times in
the tens of milliseconds. Klonatos et al. [24] address the system
complexity and the associated development effort of compiling
query engines in their LEGOBASE system, where metaprogram-
ming is used to write a query engine in Scala LMS that, when
partially evaluated on an input QEP, yields specialized C code
that implements the query. Despite the clean design, the code
generation through partial evaluation as well as the compilation

of the generated code leads to compilation times in the order of
seconds.

Adaptive. — A recent advancement in query execution is adap-
tive execution by Kohn et al. [25] and Kersten et al. [23], that we
already discussed in great detail in Section 2.1.

8 EVALUATION

In this section, we want to experimentally verify that our ar-
chitecture of embedding an off-the-shelf JIT engine provides
competitive performance to state-of-the-art systems. We want
to stress that our goal is not to outperform existing systems but
to demonstrate that our approach enables us to achieve similar
performance at much lower engineering costs.? We begin by eval-
uating the performance of QEP building blocks, then we survey
TPC-H queries, and finally we examine compilation times.

8.1 Experimental Setup

We implement our approach in mutable [18], a main-memory
database system currently developed at our group. Although
mutable supports arbitrary data layouts, we conduct all experi-
ments using a columnar layout. Since mutable does not yet sup-
port multi-threading, all queries run on a single core.

We compare to three systems: (1) PosTGRESQL 13.1 as
representative for VoLcano-style tuple-at-a-time processing,
(2) DuckDB v0.2.8, implementing the vectorized model as in Mon-
etDB/X100, and (3) HYPER, an adaptive system performing in-
terpretation and compilation of LLVM bytecode, as provided by
the tableauhyperapi PyTHON package in version 0.0.11952. For
PosTGRESQL, we disable JIT compilation as it does not improve
execution time in any of our experiments. The version of HYPER
implements the adaptive approach of Kohn et al. [25] , that can-
not be disabled. We therefore report HYPER’s adaptive execution
times composed of interpreted and compiled execution. We run
all our experiments on a machine with an AMD Ryzen Thread-
ripper 1900X CPU with 8 physical cores at 3.60 GHz and 32 GiB
main memory. All data accessed in the experiments is memory
resident. We repeat each experiment five times and report the
median.

8.2 Performance of Query Building Blocks

With our first set of experiments, we evaluate the performance
of individual query building blocks across different systems. We
use a generated data set with multiple tables and 10 million rows
per table. Tables contain only integer and floating-point columns,
where integer values are chosen uniformly at random from the
entire integer domain and floating-point values are chosen uni-
formly at random from the range [0; 1]. All data is shuffled and
all columns are pairwise independent. For HYPER and mutable,
we report only execution times without compilation times. We
further enforce compilation with the optimizing TURBOFAN com-
piler.

Selection. In our first experiment, we run several COUNT(x)-
queries with different wiere-clauses to evaluate the performance
of selection. Figure 6 (a) and (b) show our measurements for selec-
tion on a 32-bit integer and a 64-bit floating-point column, respec-
tively. We omit our findings for POSTGRESQL, as the times are
above 200 ms. Both mutable and DuckDB implement selection

ZPlease be aware that performance differences are not only due to architectural
differences but — much more likely - due to different implementations of the same
algebraic operations. In mutable we only use text-book implementations of algebraic
operations.

by conditional branching. Therefore, both systems suffer from
frequent branch misprediction at selectivities around 50% [39, 42].
The execution time of HYPER remains unaffected by varying se-
lectivity; our educated guess is that HYPER compiles branch-free
code. We can see that mutable outperforms DuckDB on all selec-
tivities and for both integer and floating-point columns. This is
likely the case because DuckDB, which implements the vector-
ized execution model, has the overhead of maintaining a selection
vector [37, 42].

We conduct two additional experiments, where we perform
a selection on two independent integer columns. In the first ex-
periment, shown in Figure 6 (c), both conditions are varied with
equal selectivity. This means, the overall selectivity of the selec-
tion is the squared selectivity of either condition. Since mutable
does not implement short-circuit evaluation and instead evalu-
ates the selection as a whole, a selectivity of V50% ~ 71% per
condition presents the worst-case for branch prediction with a
time of 47 ms. DuckDB, which implements the vectorized model,
must first evaluate one condition to a selection vector before
evaluating the second condition on the selected rows. Because
the conditions are evaluated individually, branch misprediction
occurs up to twice as often and branch prediction is worst at a
selectivity of 50% with an execution time around 78 ms. As the
selectivity grows, the second condition must be evaluated more
often. This can be seen in the slight asymmetry of the execution
time curve. HYPER’s execution time significantly grows with
the selectivity from around 10 ms at 0% to 43 ms at 100%. We as-
sume that HYPER again produces branch-free code. However, the
second column is only accessed if the first condition is satisfied.

In the second experiment, shown in Figure 6 (d), only one
condition is varied while the other is fixed to a selectivity of 1%.
The overall selectivity of the selection is hence in the range
from 0% to 1%. Since mutable evaluates the entire selection as a
whole, branch prediction works reliably well and we observe a
constant execution time of around 15 ms. DuckDB evaluates the
more selective condition first, resulting in a constant execution
time around 24 ms.

Grouping & Aggregation. Our next experiment evaluates
the performance of grouping and aggregation. We run several
COUNT (x)-queries with different croup BY-clauses. We vary the ex-
periment in several dimensions: the number of rows in the table,
the number of distinct values in the column being grouped by,
and the number of attributes to group by. Figure 7 presents our
findings.

In Figure 7 (a) to (c), a lion share of execution time is spent
on hash table operations. mutable generates a specialized hash
table implementation per query, with all hash table operations
fully inlined into the query code, and is thereby able to gain an
advantage over the other systems. We must note that HYPER
achieves impossible execution times in Figure 7 (b) for 10 to 10k
distinct values and consequently in Figure 7 (c) for a single at-
tribute to group by (in which case there are 10k groups): HYPER
answers these CoUNT(x)-queries from internal statistics rather than
executing the query.

In Figure 7 (d) we evaluate the performance of aggregation
by altering the seLecT-clause to compute a varying number of
aggregates, i.e. MIN(T.x1), ..., MIN(T.xn). The time for hashing is
dwarfed by the time to compute the aggregates. DuckDB com-
putes the minimum using conditional control flow. Note that the
values of each column are uniformly distributed and shuffled.
Branch prediction works reliably well, because the likeliness of

Systems — DuckDB HyPer

(b) Selection on 64-bit float

'g (a) Selection on 32-bit integer
=60

T T T T T T T T
E 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
Selectivitiy Selectivitiy

(d) Two conditions where one
has a fixed selectivity of 1%

(c) Two conditions of equal
selectivity

o
0 T T T T T 1 r T T T T 1
m 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0

Selectivitiy per condition Selectivity
Figure 6: Evaluation of selection with one and two one-

sided ranoe nredicatesc

(a) Group by single attribute (b) Grouping with varying

number of distinct values

o
]

o
=)

T 1) T T L
8M 10M 10 100 1k 10k 100k
of distinct values

Execution Time [s]
[
o n

? T T
2M am 6M
of rows

o

(d) Group by with varying
number of aggregates
of aggregates to compute

(c) Group by multiple attributes
of attributes to group by

1 2 3 4 1 2 3 4
@
£ 600
i 500
400
5 300
= B B 5 200
__m_m [] 5103.7 unlll pulll En
X

Execution Time [s]
o N & O ©

Figure 7: Evaluation of grouping & aggregation.
(b) n:m equi-join

w (a) foreign key join

B T T 1 - — T T
w 0 2M 4am 6M 8M 10M 0 2M 4am 6M
of rows per table

oON B O ®

T 1
8M 10M
of rows per table

Figure 8: Evaluation of equi-join.

finding a new minimum steadily decreases as the table is fur-
ther processed. mutable generates branch-free code and cannot
benefit from branch prediction.

Equi-Join. In this experiment, we evaluate the performance
of a foreign key join and an n:m equi-join. We perform the n:m
join on non-key columns to avoid the systems using a pre-built
index, since mutable does not yet support indices®. We fix the
selectivity of the joins to 107 and vary the size of the input
relations. We present our findings in Figure 8. In (a), we see the
expectable linear behaviour, with all systems but PosTGRESQL
showing similarly good performance. In (b), we observe the ex-
pectable quadratic behaviour. Notable here is that HYPER exhibits
a strong curvature and is the slowest of the systems from around
4M rows onwards. Our educated guess is that duplicates w.r.t.
the join predicate lead to long collision chains in HYPER’s hash
table.

Sorting. Our last experiment evaluates the performance of
sorting, as needed in orDER BY-clauses or for merge-join. Similar
to the experiment on grouping, we vary the experiment in sev-
eral dimensions: the number of rows in the table, the number

3In particular, mutable cannot map non-consecutive data structures like indices
from process memory into the WEBAssEmBLY VM. This is future work.

— PostgreSQL mutable

Systems — DuckDB HyPer — PostgreSQL mutable
. (c) Order by multiple
(b) Order by with attributes
varying number of 4 of attributes to order by
distinct values 1 2 3 4
— 12
/ 8l 10
/ 6 8
-

6
4 4
2+ 2 I
0 a8 8§ |

T 1 T T 1
5M iom 10 100 1k 10k100k
of rows # of distinct values

(a) Order by
single attribute

=
o
—
o

oON PO ®©

Execution Time [s]
o

Figure 9: Evaluation of ordering.

Compilation phase
HyPer OO0 [HyPer 02 mutable - QEP to Wasm[ll mutable - Wasm to x86
Q1 Q3 Q6 Q12 Q14

N
o
J

10+

Compilation time [ms]

(a) Detailed compilation times of HYPER and mutable.

Execution phase
[DuckDB [l HyPer interpret| HyPer O0 [HyPer 02 mutable
Q1 Q3 Q6 Q12 Q14
400

Execution time [ms]
S
o o
|
; L

]

| |

|

|

I

||

H

(b) Detailed execution times of DuckDB, HYPER, and mutable.

Figure 10: Evaluation of TPC-H queries on a SF 1 database.

of attributes to order by, and the number of distinct values in
the column to order by. Figure 9 presents our findings. We can
observe a significant improvement over state of the art, that we
credit to murable’s generation and consequent holistic optimiza-
tion of the sorting operation, described in detail in Section 5.3. In
contrast to interpretation or the use of a pre-compiled library, in
QUICKSORT generated by mutable the pair-wise comparison of
elements and the entire routine for partitioning are fully inlined
and specialized to the elements’ type. No callbacks are required
to compare elements and no dynamic dispatches are required to
determine an element’s runtime type.

8.3 TPC-H

So far, our experiments only focus on individual query building
blocks. Next, we conduct an experimental evaluation of TPC-H
queries. By the time of writing, mutable — and in particular our
WEBASSEMBLY backend — only supports a subset of SQL and
hence we are only able to evaluate the TPC-H queries 1, 3, 6, 12,
and 14. We are further constrained to SF-1, as for larger scale
factors the data structures constructed during execution exceed
the Wasm linear memory. We are currently unable to exploit the
technique described in Section 6 for data structures; it is only
applied to rewire single, consecutive memory regions. HYPER
writes a log that includes detailed timings of the different com-
pilation and execution phases. These timings are barely labeled
and there is no documentation or otherwise explanatory infor-
mation available for these values. We have discussed these values
with Thomas Neumann, the original author of HYPEr. With the
knowledge gained from him, we assign meaning to these values
to the best of our abilities. HYPER adaptively switches between

two compilation phases and three execution phases (cf. Figure 2a,
H1-3), sometimes leaving out a phase. We therefore chose to stack
HyPER’s timings in the visualization and encode the different
phases in the color. A limitation of HYPER’s log is that we only
know the duration of the individual phases, but not when these
phases began. This is particularly unsatisfying, because compila-
tion and execution phases may overlap, e.g. interpreted execution
may overlap with O2 compilation. We evaluate HYPER with a
single thread (ST) and with as many threads as we have CPU
cores (MT). For murable, we provide detailed timings for the
translation of the QEP to WEBAsSEMBLY and the compilation and
execution of WEBAsSEMBLY with LIFTOFF and TURBOFAN. We
present our findings in Figure 10.

With regard to compilation times, mutable’s optimizing com-
pilation with TURBOFAN is up 6.6x faster than HYPER's LLVM-
based optimizing compilation (Q1) and mutable’s fast compilation
with LIFTOFF is up to 7.4x faster than HYPER’s non-optimizing
compilation (Q12). Note that murable’s compilation times include
the generation and compilation of required algorithms and data
structures, e.g. hash table operations. At the same time, mutable’s
execution times are competitive to HYPER’s — except for Q14
where HYPER on a single core significantly outperforms all other
systems. Also note that for Q14, HYPER (MT) never compiles the
query and only performs interpreted execution.

9 CONCLUSION

Our goal was to simplify the architecture of query execution
engines while fulfilling the high-level requirements of low la-
tency, high throughput, and adaptive execution. We proposed
to embed a suitable off-the-shelf JIT engine into the database
system to delegate the execution of QEPs to. By compiling QEPs
to an efficient IR and delegating execution to said engine, we have
met that goal. Our architecture requires much less engineering
and maintenance than previous solutions. At the same time, our
experimental evaluation confirms that we achieve low latency
because of fast JIT code generation and high throughput because
of adaptive (re-) optimization during query execution — all fully
handled by the embedded engine.

We are convinced that our approach is considerably simpler to
understand and implement than current state-of-the-art. By rely-
ing on successful, battle-tested infrastructure for JIT compilation
and execution, we significantly reduce the required development
effort to build an adaptive yet highly efficient query execution en-
gine. With the ongoing standardization of WEBASSEMBLY [1, 13]
and the immense interest and amount of ongoing work in engines
supporting this language [5, 6, 20, 31, 43], our approach provides
a reliable and future-proof solution to adaptive query execution.

Further, we think that our ad-hoc generation of specialized
algorithms and data structures shapes a new path for query com-
pilation, potentially leading to much more efficient query pro-
cessing than currently possible.

REFERENCES

[1] [n.d.]. WebAssembly. www.webassembly.org

[2] Sameer Agarwal, Davies Liu, and Reynold Xin. 2016. Apache Spark as a
compiler: Joining a billion rows per second on a laptop.

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. 1999.
DBMSs on a Modern Processor: Where Does Time Go?. In VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September 7-10, 1999,
Edinburgh, Scotland, UK, Malcolm P. Atkinson, Maria E. Orlowska, Patrick
Valduriez, Stanley B. Zdonik, and Michael L. Brodie (Eds.). Morgan Kaufmann,
266-277. http://www.vldb.org/conf/1999/P28.pdf

John R Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983. Con-
version of control dependence to data dependence. In Proceedings of the 10th

(3

=

[4

[8

—

[9

—

[10]

(1]

(12]

[13]
[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24

[25]

[26]

[27

[28]

[29]
[30]

[31]

[32

(33]

ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
177-189.

Bytecode Alliance. [n.d.]. Wasmtime. http://wasmtime.dev

V8 Project Authors. 2008. V8: Google’s open source high-performance JavaScript
and WebAssembly engine. https://v8.dev/

Benoit Boissinot, Sebastian Hack, Daniel Grund, Benoit Dupont de Dine hin,
and Fabri e Rastello. 2008. Fast liveness checking for SSA-form programs.
In Proceedings of the 6th annual IEEE/ACM international symposium on Code
generation and optimization. 35-44.

Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR 2005, Second Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2005,
Online Proceedings. www.cidrdb.org, 225-237. http://cidrdb.org/cidr2005/
papers/P19.pdf

Luc Bouganim, Daniela Florescu, and Patrick Valduriez. 1996. Dynamic load
balancing in hierarchical parallel database systems. Ph.D. Dissertation. INRIA.
Donald D Chamberlin, Morton M Astrahan, Michael W Blasgen, James N Gray,
W Frank King, Bruce G Lindsay, Raymond Lorie, James W Mehl, Thomas G
Price, Franco Putzolu, et al. 1981. A history and evaluation of System R.
Commun. ACM 24, 10 (1981), 632-646.

Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert
Wilson, and Mario Wolczko. 1997. Compiling Java Just in Time. IEEE Micro
17 (1997), 36-43. Issue 3.

Andrew Crotty, Alex Galakatos, and Tim Kraska. 2020. Getting swole: Gener-
ating access-aware code with predicate pullups. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1273-1284.

MDN Web Docs. [n.d.]. WebAssembly Developer Reference. https://developer.
mozilla.org/en-US/docs/WebAssembly

Free Software Foundation, Inc. [n.d.]. LibJIT. https://www.gnu.org/software/
libjit

Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. 6, 1 (1994), 120-135. https://doi.org/10.
1109/69.273032

Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish:
efficient execution of polyglot queries. Proceedings of the VLDB Endowment
15, 2 (2021), 196-210.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing
the web up to speed with WebAssembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
185-200.

Immanuel Haffner. 2020. murable. https://bigdata.uni-saarland.de/projects/
mutable

Clemens Hammacher. 2018. Liftoff: a new baseline compiler for WebAssembly
in V8. V8 JavaScript engine (2018).

Apple Inc. [n.d.]. WebKit. webkit.org

Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. 2019. Not
so fast: Analyzing the performance of webassembly vs. native code. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 107-120.
Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything you always wanted to know about com-
piled and vectorized queries but were afraid to ask. Proceedings of the VLDB
Endowment 11, 13 (2018), 2209-2222.

Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and
Flying Start: fast compilation and fast execution of relational queries in Umbra.
The VLDB Journal (2021), 1-23.

Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Build-
ing efficient query engines in a high-level language. Proceedings of the VLDB
Endowment 7, 10 (2014), 853-864.

André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of
compiled queries. In 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE). IEEE, 197-208.

Thomas Kotzmann, Christian Wimmer, Hanspeter M6ssenbock, Thomas Ro-
driguez, Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot™
client compiler for Java 6. ACM Transactions on Architecture and Code Opti-
mization (TACO) 5, 1 (2008), 1-32.

Konstantinos Krikellas, Stratis D Viglas, and Marcelo Cintra. 2010. Generating
code for holistic query evaluation. In 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010). IEEE, 613-624.

Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 743-754.

Vladimir Makarov. [n.d.]. MIR. https://github.com/vnmakarov/mir
Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017), 1-13.

Morzilla Developer Network. [n.d.]. SpiderMonkey. developer.mozilla.org/
en-US/docs/Mozilla/Projects/SpiderMonkey

Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539-550.

Thomas Neumann and Alfons Kemper. 2015. Unnesting arbitrary queries.
Datenbanksysteme fiir Business, Technologie und Web (BTW 2015) (2015).

www.webassembly.org
http://www.vldb.org/conf/1999/P28.pdf
http://wasmtime.dev
https://v8.dev/
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.gnu.org/software/libjit
https://www.gnu.org/software/libjit
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://bigdata.uni-saarland.de/projects/mutable
https://bigdata.uni-saarland.de/projects/mutable
webkit.org
https://github.com/vnmakarov/mir
developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[34] Tobias Nieflen, Michael Dawson, Panos Patros, and Kenneth B Kent. 2020.
Insights into WebAssembly: compilation performance and shared code caching
in Node. js. In EVOKE CASCON 2020. ACM, 163-172.

[35] Oracle. [n.d.]. OpenJDK: Graal project. openjdk.java.net/projects/graal/

[36] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017.
Self-Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[37] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo-
a vector algebra for portable database performance on modern hardware.
Proceedings of the VLDB Endowment 9, 14 (2016), 1707-1718.

[38] Jun Rao, Hamid Pirahesh, C Mohan, and Guy Lohman. 2006. Compiled query
execution engine using JVM. In 22nd International Conference on Data Engi-
neering (ICDE’06). IEEE, 23-23.

[39] Kenneth A Ross. 2002. Conjunctive selection conditions in main memory. In
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 109-120.

[40] Filippo Schiavio, Daniele Bonetta, and Walter Binder. 2021. Language-agnostic
integrated queries in a managed polyglot runtime. Proceedings of the VLDB
Endowment 14, 8 (2021), 1414-1426.

[41] Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. 2016. RUMA has
it: rewired user-space memory access is possible! Proceedings of the VLDB
Endowment 9, 10 (2016), 768-779.

[42] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization
vs. compilation in query execution. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware. ACM, 33-40.

[43] Wasmer, Inc. [n.d.]. Wasmer. https://wasmer.io

openjdk.java.net/projects/graal/
https://wasmer.io

	Abstract
	1 Introduction
	2 A New Architecture for Compiling Query Engines
	2.1 Other Architectures
	2.2 Our Architecture

	3 WebAssembly
	3.1 Embedding WebAssembly

	4 Compiling SQL to WebAssembly
	4.1 Pipeline Model
	4.2 Compiling Simple Operators
	4.3 Compiling Complex Operators

	5 Ad-hoc Library Code Generation
	5.1 Conceptual Comparison
	5.2 Our Approach: JIT Code Generation
	5.3 Code Generation by Example

	6 Executing WebAssembly in a Database System
	6.1 Accessing Data by Rewiring
	6.2 Result Set Retrieval

	7 Related Work
	7.1 JIT Frameworks & Engines
	7.2 Query Execution

	8 Evaluation
	8.1 Experimental Setup
	8.2 Performance of Query Building Blocks
	8.3 TPC-H

	9 Conclusion
	References

