On Producing Join Results early

Jens-Peter Dittrich* Bernhard Seeger*

David Scot Taylor Peter Widmayer!

Extended Abstract

Abstract

Support for exploratory interaction with
databases in applications such as data min-
ing requires that the first few results of an
operation be available as quickly as possible. We
study the algorithmic side of what can and what
cannot be achieved for processing join operations.
We develop strategies that modify the strict
two-phase processing of the sort-merge paradigm,
intermingling join steps with selected merge
phases of the sort. We propose an algorithm
that produces early join results for a broad class
of join problems, including many not addressed
well by hash-based algorithms. Our algorithm
has no significant increase in the number of I/0O
operations needed to complete the join compared
to standard sort-merge algorithms.

1 Introduction

We study the problem of performing a join oper-
ation in a database while producing result tuples
as early as possible. This will allow for piping
output elsewhere (to give another process a head
start) or for estimates of total output size, which
may help lead to earlier abortions of joins which
appear to be delivering undesired results, e.g. too
many or too few result tuples.

A commonly used algorithm for joins is the
SORT MERGE JOIN: based on the join attribute,
each of the sets is sorted (such as by external
mergesort [12]), and then both sets are joined
by a merge operation that requires only a single
I/0O pass over each set, under the assumption that

*Dept Math and Comp Sci, U. of Marburg, Germany

ftaylor@cs.sjsu.edu tel: (408) 924-5156. fax: (408)
924-5062. Dept of Comp Sci, San Jose State University

*Inst Theoretical Comp Sci, ETH Ziirich, Switzerland

tuples with matching attributes for the join (i.e.
equal for an equi join) fit in main memory at once.
Here, the efficiency goal is to minimize the total
number of I/O operations.

While several studies analyze the overall effi-
ciency of join algorithms, the efficiency in terms
of early result production has — to the best of
the authors’ knowledge — never been considered
analytically. Our algorithm produces join results
early (progressively) without sacrificing overall
I/O-efficiency. We present the first analysis quan-
tifying the trade-off between I/O-efficiency and
early join result production for sort-merge joins.

The results presented in this work hold for a
large class of joins based on sorting, such as equi
joins, spatial joins (plane sweep), temporal joins,
band joins, similarity joins and more.

Sort-Merge Joins vs. Hash-Joins: For equi
joins the hash-join was found to be more efficient
than the sort-merge join (Graefe [9]). For non-
equi joins, however, many state-of-the-art algo-
rithms are based on sort-merge. For spatial in-
tersection joins, the algorithms of [16, 1, 4] are
extensions of the sort-merge join. [1] shows the
sort-merge join to be more efficient than a hash-
based method [18], even without exploiting the
join-during merge technique proposed in [15] (see
Section 1.1). The most efficient algorithms for
similarity joins are also sort based [17, 21, 2, 5].

Even for equi joins, there exist important cases
when sort-merge joins are more efficient: for mul-
tiple joins, when multiple sort-merge join opera-
tors are combined to run in a pipeline [20], con-
sequent operators can exploit the “interesting or-
dering” established by a single sorting operation.

Additionally, Li, Gao and Snodgrass [13] re-
cently explored techniques to increase efficiency
of the traditional sort-merge join in the presence
of high intrinsic skew, which is known to adversely

effect hash-based algorithms. Their experiments
show that these new sort-merge join variants are
much more efficient in the presence of skew than
traditional sort-merge join for equi joins found in
current commercial database systems.

1.1 Previous Work

Here, we give an overview of related work on join
processing with a focus on techniques that deal
with early result creation. Graefe [8] contains an
excellent general overview of join techniques.

Hashing Based Algorithms: Wilschut and
Apers [23] present the Symmetric Hash-Join (SHJ)
for pipelined processing of equi-joins. A similar
idea has been proposed by Raschid and Su [19].
The most serious limitation of sHJ is that two
hash-tables have to be kept in main memory. Ob-
viously, this requirement can not be met with very
large data sets. Urhan and Franklin [22] propose
XJoin, a multi-threaded extension of SHJ that can
keep the hash-tables in secondary memory. A sim-
ilar approach is presented by Ives et al [11] where
the algorithm is used for data integration of dif-
ferent active sources.

Haas and Hellerstein [10] address online aggre-
gation when the input is received from a join. In
order to produce accurate results quickly, they in-
troduce Ripple Joins. The basic idea is to control
the join processing using quality measures of the
approximated aggregate value.

Luo, Naughton and Ellmann [14] recently pro-
posed a non-blocking parallel spatial join algo-
rithm, combining the findings of [18] and [4].

Sorting Based Algorithms: Sort-based joins
have previously been considered blocking opera-
tors, where first results are produced only after
a considerable portion of the total runtime. This
is particularly true for the original SORT MERGE
JOIN [3] where both inputs are entirely sorted be-
fore being merged.

SORT MERGE JOIN has been investigated for
a large number of special circumstances [8], such
as when one of the sets is small enough to fit in
main memory, or when the set sizes differ sub-
stantially [7]. Here, we consider the problem when
both sets are too large to fit in main memory.

Negri and Pelagatti [15] observed that the
sorted lists may be an unnecessary byproduct of

the SORT MERGE JOIN procedure. In this case,
it is easy to slightly reduce the total number of
I/O operations. For each of the two input se-
quences, the tree of external merge operations for
mergesort should be modified so that for the root
level, only half of the fan-in is needed. Next,
the final level of each of these sorting procedures
should be replaced with a single “virtual merge”
in which the lists from both sets are loaded into
memory, but instead of outputting two sorted
lists, the lists are stepped through in linear time,
outputting only the successful join tuples. As
in [15], this final operation is called JOIN-DURING-
MERGE. The number of I/O operations saved
in this approach varies, and depends on the fan-
in of the sort, and the completeness of the leaf
level of the original sort trees. In the most com-
mon case, when only one merge node is needed
for the two mergesorts combined, this approach
eliminates one read and one write of all the data.
This optimal case maximizes savings. For multi-
level mergesort operations, the diminished fan-in
of the mergesort root reduces the I/O operations
saved, but in most cases the savings are compa-
rable to the optimal case.

In [6] we presented a generic non-blocking tech-
nique to produce early join results. This is
achieved by intermingling the sorting steps with
tuple comparisons across both sets, without sig-
nificantly increasing total runtime. [6] presents a
basic algorithm, shows how to apply our technique
to a large class of different join operations and ex-
amines a special case variant of the algorithm pre-
sented here. A series of experiments with differ-
ent data sets show the efficiency of our technique.

1.2 Contributions

We examine the algorithmic side of progressively
reporting result tuples as the SORT MERGE JOIN
proceeds, instead of waiting for the sorting pro-
cess to complete. Our PMSJ algorithm is an ex-
tension and improvement over that of [6], which
focuses on experimental results. PMSJ draws its
efficiency from an intricate interleaving of tuple
comparisons for sort and for join. For instance, to
further increase the rate at which results are re-
ported, we create imbalanced external mergesort
trees, with different fan-in values at different parts

of the tree. The novel way we do this balances
the need for immediate results against total run-
time, simultaneously achieving near best-known
values for each. We define a framework for mea-
suring the overall and progressive performance of
our algorithm against the currently best known
algorithms. Using this framework, we provide full
analysis of our algorithm, the first such analysis
of a non-blocking SORT MERGE JOIN approach.

1.3 Outline

In Section 2, we make the ultimate goal of our
work technically precise. In Section 3 we present
our PROGRESSIVE MERGESORT JOIN (PMSJ) al-
gorithm and its analysis. It closely matches the
I/0 efficiency of the original SORT MERGE JOIN
algorithm. We further discuss practical and im-
plementation details in Section 4. In particular,
we show variants to reduce the number of I/O
operations to almost exactly match those of [15]
and produce all final results in sorted order. We
conclude in Section 5.

2 Preliminaries

We begin by presenting the general framework,
terminology, and variable definitions for our algo-
rithm. Next, we propose some related problems,
which serve not only to further motivate the PMSJ
problem, but also to give us an “ideal” standard
against which we will formally compare PMSJ.

2.1 Elementary Calculations

We consider two large sets of data, R and S.
For simplicity, we will assume that they are equal
sized sets of N elements each, though this is not
required. Records are read B elements per page,
and let n = [N/B] be the total number of I/0O
operations to read (or write) all of the data from
one of the sets once. For main memory of size M
(in input items), and m = | M/B] the number of
pages which fit in main memory, the fan-in F of an
external mergesort can be as large as as m — O(1).
Higher fan-in tends to lead to a smaller number
of passes over the data, i.e., a shallower merge-
sort tree, and hence shorter runtime. While full
main memory might be used for the evaluation of

the leaf nodes of the sort tree induced by external
memory mergesort, we use F' to denote the fan-
in, allowing the option to use a smaller fan-in (see
also [8]). To simplify notation, we may assume
B divides larger values from here forward.

For the standard external memory mergesort of
N items, initial runs of size M' can be created
internally. There will be [N/M] such runs, which
constitute the leaf nodes of the external mergesort
tree, and in total they will require n reads and n
writes for their creation. With fan-in F', there will
be |logp [2+]] complete levels of merging within
the sort tree. Each of these levels will need to
read and write all of the input. (For a tree with
a single merge node, we let F = [&-].) Further,
there will be one incomplete level of merges with
([- Fliogr IN/M1]y /(F — 1)] merge nodes of
full F' fan-in, each of which will use F'm read and
write operations. Finally, if the above do not ac-
count for all of the leaf nodes, there will be one
additional merge node, with fan-in < F. (There
may also be one incomplete leaf node, with input
size < M.) This assumes that the mergesort tree
is constructed from the root towards the leaves,
such that all levels of the tree are full except per-
haps for the lowest.

This is precise but cumbersome. To simplify
notation during informal discussion, we will al-
low “fractional” values in our calculations for the
levels within the mergesort. Instead of calculat-
ing the exact number of I/O operations needed
for the final, incomplete level of an F-way merge-
sort, we approximate the full process as needing
(logp [2] + 1)n reads, and writes. We use more
precise values in our formal analysis (Section 3.1).

In the naive SORT MERGE JOIN algorithm, the
sort goes through logp [%] merge levels, plus
the initial run creation for each set, and per-
forms a final read of all data for the join step.
If Z is the number of output items, and z =
[Z/B] is the number of pages of output, it takes
(2logp [2]+4)n reads, and (2logp [2-]+2)n+2
writes. Between the two sets, the algorithm of [15]

'Tf the initial sorting is done via replacement-selection
(see [12]), the initial runs are of expected size 2M, resulting
in only half as many leaf nodes for the mergesort. It can be
added to any mergesort based algorithm (including ours).
See [8] for discussion.

will save up to 2n reads and writes each?, but will
not produce the two sorted sets.

2.2 Growing Sample Sizes

Before running a join operation on two huge data
sets, it may be desirable to sample each to see
what the output will look like, or to approximate
the size of the output® (e.g. to estimate the sim-
ilarity parameter in a similarity join). For given
samples R C R and S’ C S, |R| = |5 = X,
the join problem for R’ and S’ mimics the orig-
inal join problem with different size sets. When
the subsets to join are given with X items each,
the join of those items can be computed fastest by
merely running the best algorithm known for the
usual join problem, for instance the one from [15].
If we do this for a small subset, the join com-
pletes rapidly, and we get the first few join results
quickly.

One important issue is how to choose a good
sample size X. For the purpose of getting an ex-
pectation* of how many join result tuples we gen-
erate on the fly, we assume that within each set,
the data is “uniformly distributed” in the follow-
ing sense: if we take one item at random from each
set, the probability that a successful join opera-
tion is performed between them is Z/N?2. This im-
plies that if there are Z join results within the en-
tire Rx S join, then subsets of size X are expected
to deliver Z(X/N)? results. For X < N//Z, less
than one result is expected. For Z = O(N), a
relatively large sample will be needed to find in-
teresting results, and the smaller Z is, the larger
the sample must be. The complicating factor is
that Z is not known; Z is needed to choose a good
sampling size, yet it is estimated by the sample.

The best we can hope for is a dynamic, growing
sample, produced by an algorithm which delivers

%In the optimal (and most common) case, when the new
tree uses only a single merge node, the savings will be 4n to-
tal I/O operations. In general, multi-level trees save %277,
to (4 — O(1)/F)n 1/O operations.

3 Although a uniform sample of the inputs does not give
a uniform sample of the outputs, total output size can still
be estimated. See also [6].

“We aim at expected case behavior. Worst-case results
to obtain even one result tuple for a join takes asymptot-
ically just as long as sorting, by reduction from external
element uniqueness. We omit the proof for lack of space.

join results for increasing sized subsets and nev-
ertheless completes in the best known time. This
allows sample sizes to be taken in a fully adaptive
way, in the sense that no choices for the sample
size X (or a priori estimates of Z) are needed. We
propose PMSJ, which comes close to this behavior:
after T I/O operations, for any T', the number of
joins reported is close to the number that would
be produced from a sample, if the sample size was
chosen to run in T operations. That is, we are
competitive with the above ideal standard.

2.3 Budgeted Sort Merge Join

Let us turn the above reasoning around: given
an I/O budget, how can one maximize the to-
tal number of successful joins found from R and
S? If we have a fixed budget of I/O operations,
it is reasonable to pick as large a sample from
each as can be run through the algorithm with
the fastest completion. Of course, not knowing
how many results will come from the join makes
precise budgeting of the I/O impossible. In join-
ing two subsets of size X, Z(X/N)? result tuples
are expected, at an I/O budget of approximately
[£7(41ogp 2[2] +2) (ignoring the output of join
result tuples). (A more precise I/O budget is
given in Lemma 7, but our goal here is to intro-
duce intuitive ideas.)

Note that it might be impossible to progres-
sively produce this number of results using this
number of I/O operations as X grows. For a sin-
gle, given X value, however, we can run the al-
gorithm of [15] to get the expected join result tu-
ples. Thus, our BUDGETED SORT MERGE JOIN
(BsMJ) performance represents a whole family of
algorithms, parameterized by the sample size X
of items per list. Any sample size corresponds to
a budget of I/O operations, and an instance with
this budget produces no output at all until the
root node of the [15] algorithm is reached, and
during this (linear time) JOIN-DURING-MERGE,
all of the output will quickly be produced. The
speed at which join result tuples are produced
within that final JOIN-DURING-MERGE node de-
pends on how large the samples are: the larger X
is, the more rapidly the tuples will come once the
final node is reached (though it will take longer to
reach that node).

Our ultimate goal is to create a single algo-
rithm which progressively increases the sample
size, and for each sample size compares with the
best performance (measured in join result tuples
versus [/O operations), thus measuring it against
the entire family of BSMJ algorithms with spe-
cific I/O budgets. As one run of our algorithm
uses more and more I/O operations, it is pro-
gressively compared to a BSMJ algorithm with an
I/O budget to match. We will measure our al-
gorithm’s deviation from this ideal curve in two
ways. The first (delay) measures how many ex-
tra I/O operations our algorithm has vs. the al-
gorithm of [15]. The second (output efficiency)
measures how many results we progressively pro-
duce compared to those [15] could produce using
the same I/O, that is, we compare our results and
I/O performance to BSMJ.

It will become clear that our PMSJ algorithm
allows many ways to balance output efficiency
against delay. For this common trade-off between
two goals — greedy (produce join results imme-
diately) vs. long range (find all join results as
quickly as possible) — we introduce an interesting
technique for our mergesort tree evaluation which
nearly optimizes both simultaneously.

One fact is painfully obvious even if we could
match the entire BSMJ performance curve with
one algorithm: the number of joins reported at
the beginning of a run is a small percentage of
the whole. If the sets are large enough to require
several levels within the mergesort, this seems to
be inherent to the problem.

3 Progressive Mergesort Join

In this section we introduce our non-blocking
join algorithm PROGRESSIVE MERGESORT JOIN
(pMsJ). Ideally, we would like to create a sin-
gle algorithm which will progressively produce re-
sults which match the performance of the entire
BsMJ family as closely as possible, rather than just
matching it at one point. In order to match the to-
tal I/O performance, at most (4logp [£7]4+2)n+2
I/0 operations may be used to run the algorithm.

Our approach is to interleave join operators
within the mergesort procedure. We extend the
work of [6] in several ways: we carefully order

the evaluation of the mergesort tree, strategi-
cally place just a few join operators, and perform
merges much more frequently in some parts of the
tree. This new algorithm will produce many more
early join results. We then quantify our efficiency
using the measures introduced in Section 2.3.

We treat sets R and S symmetrically. We first
present an internal “level” (Figure 1) within the
tree of the sorting process of PMSJ, and then will
describe the top and bottom of the tree. In the
figure, each node represents a process which takes
input streams from its children processes, merges
them, and outputs a stream with longer sorted
subsequences (runs). First, consider the solidly
drawn nodes at the top of the figure. Data from
R will be divided equally between these nodes for
R, and the single, leftmost JOIN-DURING-MERGE
node for R at the same level. The same holds
for S, using the nodes drawn with dotted lines.
(To simplify our description and analysis, we are
assuming here that N is a size which will make the
bottom level of our tree complete. More formal
analysis is given in Section 3.1.) The nodes at the
bottom of the figure represent nodes the next full
level down, for which corresponding statements
hold. The tree will be evaluated by post-order
traversal, starting with the JOIN-DURING-MERGE
nodes on the left. Once we finish evaluating such
a node, its siblings are evaluated (any arbitrary
post-order will do), and then its parent (another
JOIN-DURING-MERGE node) is evaluated.

For a node-by-node description, we begin with
the nodes on the right side of the tree. They are
very much like the external mergesort nodes in
a standard SORT MERGE JOIN algorithm. Each
node takes F' sorted subsequences from its chil-
dren and merges them, producing a longer sorted
subsequence. For each of these nodes, either all
of the children streams are from R, or they are
all from S, and all of these nodes have full fan-
in . The R and S children nodes are drawn in
an alternating way, to show a “uniform progres-
sion” through the two data sets, but many possi-
ble evaluation orders (including strict left-to-right
post-order) give the same performance.

The nodes on the left side of the tree are JOIN-
DURING- MERGE nodes, similar to the root node of
the [15] algorithm, but modified to produce sorted
outputs for each R and S subset. They have dif-

2

2 N ' \
2 B srrde
: FF FFFF FF

N
\
\
\
.
\

.

F

F

Join During Merge Node.
i+ Merge 3 streams from each
“ of R, S into 2, with join.
Output size 4x last full level.

Merge Node for R.
Merge F' streams
from R, without join.

&

i Merge Node for S.
i.vy Merge F streams
" from S, without join.

. Merge Node for R, S.
> Merge 2 streams each
" into 2, without join.

Figure 1: One full level of PMSJ to the next (F = 64).

ferent fan-in values, and take streams of both R
and S values. They merge their sorted subsets
from R (S) into longer sorted subsets from R (),
and while they do this, produce any join results
between the two subsets, while they are in mem-
ory. Care must be taken to not re-report previous
join results, but this is straightforward (see [6]).

Notice that the left side of the tree has many
more levels than the right side. We consider the
right side to define the levels of the tree, while
the left side of the tree has log, F' — 1 extra inter-
mediate levels per full level, with many different
fan-in values. To simplify later analysis, we have
assumed that F' is a power of 2.

The last type of node in the tree (there is
only one such node per level) has two children
from each of R and S. It merges these two
pairs into two sorted subsets. The node is only
added so that its parent node will have total
fan-in F' (vs. F + 2), a technical detail. Such
nodes can also be used to eliminate a more im-
portant problem: within the algorithm, if a value
is repeated nearly M times (or if there are many
“similar” values in a similarity search), it can oc-
cur that there is not enough room in the mem-
ory to hold all of these values, and still main-
tain fan-in F. ([13] also addresses the problem
of heavy skew.) We can use one of these nodes
before each JOIN-DURING-MERGE node, and con-

vert all JOIN-DURING-MERGE nodes into regular
join nodes with fan-in two (one each from R and
S). With this conversion, there will be enough
space in memory to hold all values, unless there
are more than M repeats. While this conversion
will add to the overhead of the algorithm, this
same problem must be addressed by any join al-
gorithm.

It remains to describe the top and bottom of
the tree. The top of the tree looks similar to the
left side of Figure 1, with only the single JOIN-
DURING-MERGE node as the root, and that root
does not need to produce the sorted subsets of
R and S. The bottom of the tree will look simi-
lar to the bottom of two external mergesort trees
(one for each of R and S), except for the two left-
most leaf nodes. Other than these, there will be
% — 1 leaves from each of R and S, size M each,
and they will each sort their contents within in-
ternal memory and output the sorted list. The
leftmost leaf node (which will be the first node in
the tree to evaluate) takes M /2 records from each
of R and S, sorts the two subsets individually, and
then while they are in memory, performs a join on
them (see also Footnote 1). It produces the sorted
subsets and the join results as output. The sec-
ond “leat” node (and the second node overall to be
evaluated) is similar, except that it also takes the
sorted subsets from the first leaf as inputs (need-

ing only 2 more pages), reports only new join re-
sults, and outputs a sorted subset of length M for
each of R and S. To simplify later analysis, this
second “leaf” (it does have a child, but also looks
like other leaves because it also performs an inter-
nal sort on raw, unsorted data) will be considered
to be on the bottom full level of the tree, with
all of the “regular” leaves, while the very first leaf
evaluated will be treated as a unique subleaf.

In this modified tree, the leftmost leaf under-
goes log, F'logr [| + 1 merges rather than the
logy [2] which the rightmost leaves will undergo.
The fan-in of the leftmost nodes are determined
by balancing the need to produce results imme-
diately, while not wanting to delay future levels
by too much. They also allow any nodes within
the same (full) level to have the same number of
children as descendants.

3.1 Analysis

We want to analyze PMSJ in two ways: how many
I/O operations does it use, and how quickly does
it produce results along the way. Let the level of
the root node be 0, and each full level node has a
level 1 larger than the full level node above it. We
make several assumptions to simplify calculations:
B divides M/2, N = MF® for some integer i (so
logp [2] = logp 2% is an integer), and F = 2/ for
some integer j. (If these assumptions do not hold,
similar results, with different constant terms, will
follow.) Due to space constraints, all lemma
proofs have been moved to Appendix A.

Lemma 1 (a) All regular leaves are associated
with size M subsets of R or S. The full level leaf
JOIN-DURING-MERGE node is associated with a
size M subset of R and S.

(b) Any regular non-leaf node is associated with
sets F' times larger than each of its F' children.

(¢) The R and S subsets associated with any
full level JOIN-DURING-MERGE node are (each)
the same size as the subsets associated with regu-
lar nodes at the same level. Any JOIN-DURING-
MERGE node is associated with sets twice as large
as its child JOIN-DURING-MERGE node.

Lemma 2 The tree contains logp % full merge
levels. Level logp % contains the leaf nodes.

Lemma 3 (a) At full level i, for i < logp %,
there are F* — 1 reqular nodes are associated with
size MF'o8r 37— = N/F' subsets of R, and the
same number associated with S. A single JOIN-
DURING-MERGE node is associated with size N/F'
subsets of R and S.

(b) For 0 < j < logy, F, the jth intermediate
JOIN-DURING-MERGE node above full level i is as-
sociated with size 27 N/F* subsets from R and S.

Lemma 4 After the evaluation of a reqular node
at level i, the total number of 1/0 operations (ex-
cluding join results) used in the evaluation of that
node’s entire subtree is (logp & — i+ 1)2n/F".

Lemma 5 (a) During the evaluation of a JOIN-
DURING-MERGE node at full level i, for i > 0,
4n/F" I/O operations take place (excluding join
results).

(b) During the evaluation of the jth interme-
diate level JOIN-DURING-MERGE node following
level i, 274n/F* I/0O operations take place (exclud-
ing join results).

(¢) The “bookkeeping node” which evaluates
just before the JOIN-DURING-MERGE node at level
i uses 8n/F™*1 I/0 operations.

Lemma 6 Let T[i] be the total number of 1/0
operations (excluding join results) used to evalu-
ate the entire subtree rooted at the JOIN-DURING-
MERGE node at full level i.
(a) Tllogp] = 6m = —5

Flosr P

(b) For 0 < i < logp 2% :

((logFM i+ 2)

Theorem 1 The total number of 1/0 operations
used in PMSJ is

log ﬁ71
T | =
[l] n Z Fk? Flogp bod

k=i+1

N logF——l 4 9
n 410gFM+6+ kz:l ﬁ-l-m +z

<dn (logr 45 +3/2+ 715) + 2

Proof. The fundamental difference between the
full PMSJ analysis and a subtree rooted at the
JOIN-DURING-MERGE node at level ¢ is that the
root does not output the sorted “subsets” of R
and S. This saves 2n write operations from what

it would otherwise have using the equation in
Lemma 6(b). The rewrite is an upperbound on
the telescoped summation terms. O

We can now compare our total I/O operations
against those of [15]: in [15], there are logp &
merge levels (this allows [15] to use double fan-in
on the top level, giving it a slight advantage, but
otherwise the size of N would allow a full bot-
tom level in our algorithm but not theirs). Each
merge level reads in all of the data (2n reads) and
all but the root level write all of the data (2n
writes). The leaf level also reads and writes all of
the data, for n(4logp 2% + 2) + z I/O operations.
This nearly matches the I/O operations for PMSJ,
if we allow for one extra read and write of all the
data (4n I/O operations). (We note that without
the bookkeeping node at each level, the recursion
gives less than n(4logp 2% 46) I/O operations. To
implement this would require fan-in '+ 2 at each
full level JOIN-DURING-MERGE node, or similarly,
increasing the fan-in from F/2 + 2 to F/2 + 4 at
the previous JOIN-DURING-MERGE node.)

In order to accurately compare how quickly our
algorithm generates join tuples compared to BSMJ,
we need to be more precise with I/O calculations
for [15] than we have been previously.

Lemma 7 Let X be divisible by M. To join two
sets of size X, the algorithm of [15] uses at least
4% (|logp 2] + 3/2) — 2mFlloer 3| I/0 opera-
tions, excluding those used for join results.

Lemma 8 Let X = 2!M < N for some positive
integer . To join X elements from each set, PMSJ

X
needs at most 45 (|logp 2| +3) — omFloer 37
I/0 operations, excluding those used for join re-
sults.

Lemma 9 After joining size X subsets from R
and S, Z(X/N)? results are expected.

Theorem 2 Suppose that in its progression,
PMSJ has used T I/O operations, and has joined
size X subsets from R and S. If the algorithm
of [15] is run on a sample size chosen to useT 1/0
operations, let BestCase[X] and WorstCase[X]| be
the best and worst number of results expected from
it, as a ratio, compared to those produced by PMSJ.

(T excludes join results).

2
llogr 37 +3 >
|logp %J +3/2

(a) BestCase[X] < <

llogy 2] +3)2
|log %J +3/2

Proof. (a) The best performance for PMSJ
comes just after it has completed a JOIN-DURING-
MERGE node. Let that node have size X. At
this time, PMSJ has used at most the number of
I/O operations in Lemma 8. Assuming that the
other algorithm has processed sets of size aX,
we plug into Lemma 7. For a > (|logp 37 +
3)/(|logp 2| +3/2), it will have more I/O opera-
tions than PMsJ. We can see from Lemma 9 that
squaring this result gives the comparative number
of results expected.

(b) Let X be such that 4% (|logp 37| + 3) —

2mF1°8r 37) = T If a JOIN-DURING-MERGE node
has just completed, we are done by (a). Oth-
erwise, consider X' to be the size of the sets
of the next JOIN-DURING-MERGE node to com-
plete if the algorithm were to proceed. After
that node, performance would be BestCase[X'].
Instead, the last JOIN-DURING-MERGE node to
have completed had size X'/2 (Lemma 1.c), and
it must have produced 1/4 of the output expected
from the size X' sets (Lemma 9). Allowing BSMJ
the number of I/O operations PMSJ needs to pro-
cess X' sized sets, yet only allowing PMSJ to pro-
cess size X'/2 sets gives the result. O

Worst case performance can be improved
slightly if it is only measured between nodes of
PMSJ, with a numerator term of [logs %J + 2
rather than [logp 2| + 3, but this is omitted for
space.

(b) WorstCase[X] < 4 <

Corollary 1 For any fized 1I/0 budget T > m,
PMSJ and BSMJ (the latter with T specified) are
expected to produce the same order of results.

4 Variants and Practical Issues

We view our final approach as a balance between
the greedy and long term goals. Such a balance
is often better than either extreme: once we have

some results in hand, we can be a bit more patient
until we can get our next “big payoff” (the join
at the next level in the tree). The tree which we
present with intermediate nodes is close to the
“results now” extreme, while the SORT MERGE
JOIN algorithm of [15] is at the other.

4.1 Less Uniform Variants

Of the many variants possible, it is useful to con-
sider variants which are not uniform throughout
the different levels of the tree. For instance, if the
goal is to optimize the worst ratio, our scheme
can be improved upon: notice that for small X
values, Theorem 2 implies an output efficiency of
1/4 down to 1/16 (or to just under 1/7 if we don’t
measure performance between nodes), while for
very large X values, it ranges from just under 1
to just under 1/4. Allowing a small sacrifice to
efficiency of large samples, the worst-case ratio
for small X can be slightly augmented, by using
different structure for the lower levels of the tree.

In another example of how non-uniform behav-
ior might be useful, notice that most of the over-
all I/O delay comes from the intermediate level
nodes just under the root-level merge. When
a user reaches these nodes, he should have bet-
ter estimates as to how many total join results
will be produced, and thus may be committed to
running the algorithm to completion. If the in-
termediate level nodes near the root of the tree
are eliminated, so will nearly all of the I/O over-
head. (To simplify implementation, this will work
best with separate sample and result streams as
discussed in Section 4.3.) For instance, getting
rid of the intermediate level nodes between level
0 and 1 will reduce the total I/O’s to under
n(4logp & + 2+ 4/(F — 1)) + 2, only increased
from those of [15] by the 4n/(F — 1) term.

4.2 Single Level Trees

While the algorithms of Sections 3 and 4.1 have
good performance for multilevel sort trees, many
external mergesort processes have only one merge
level. In this case, the I/O overhead of our pro-
cedure may be larger than practical. For trees
which only require one merge node with greatly
reduced fan-in (< F/2), the algorithm of [15] uses

only 4n reads and 2n + z writes®.

In this case, we propose a simplified version of
our PMsSJ algorithm. We modify the algorithm
of [15], replacing all leaf nodes to look like our
very first leaf node: each will share memory be-
tween R and S, and produce join results between
the already loaded sublists. (This will result in
2[N/M] total leaves, each with a sorted set out-
put for R and S.) No intermediate level JOIN-
DURING-MERGE nodes are added. Just as in [15],
this tree will have 4n reads, and 2n + z writes®,
for a total I/O which matches that of [15]. At the
beginning of the procedure, results will be pro-
duced at a rate to match the BsMJ performance,
but instead of accelerating, they continue to be
produced at that same rate until the final merge
node. Once that final node is reached, remaining
results will be produced quickly. Implementation
details and experimental results of this simplified,
one-level version are given in [6].

4.3 Sorted Results

For some applications, it is useful to give the re-
sult tuples in sorted order. PMSJ can be easily
modified to give final results in sorted order if al-
lowed 2 streams of output: an unsorted sample
stream, and the final sorted output stream. The
final JOIN-DURING-MERGE node can be modified
to output all successful joins to the output stream
(without eliminating formerly reported results by
checking which input streams the results come
from), and it will output all results in sorted order.
The earlier reported results can be piped to a sam-
ple stream, used to estimate the total number of
results expected, and to see some examples. If the
sample stream allows for a few repeated results,
the algorithm runs faster due to simplified code.
(The “duplicate check” code can be eliminated,
speeding runtime without changing the I/O oper-
ations.) The total number of results projected can
be adjusted to still be accurate. Further, because
each merge node should return many more results

®The merge node may also include unsorted subsets of
R and S which are not in any leaf node, decreasing the
reads and writes by up to m — ||S|/m] — |[|R|/m] each.
For large data sets, this will be a small savings.

®As in Footnote 5, a marginal decrease of the number
of write operations may be possible. Here, there is only an
m — [2|S|/m] — |2|R|/m] decrease.

than all of its descendants combined, most results
in the sample will still only be reported once.

5 Conclusions

We have presented an algorithm which uses a
new technique to progressively produce join tu-
ples. After T' I/O operations, for any 7' > m, it
is expected to produce, to within an O(1) multi-
ple, the same number of results which could be
produced by the best SORT MERGE JOIN algo-
rithm, even though T is not specified to PMSJ
and it is specified to the optimal SORT MERGE
JOIN algorithm. Our technique centered on the
idea of concentrating extra join operations along
the “spine” of the external mergesort tree, which
is small when compared to the whole tree. We
plan to apply this approach, which holds some
similarity to the that taken in iterative deepening
breadth first search, to other problems for which
multi-level trees are prevalent.

References

[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel,
and J.S. Vitter. Scalable Sweeping-Based Spatial
Join. VLDB, 570-581, 1998.

C. Bohm, B. Braunmiiller, F. Krebs, and H.-
P. Kriegel. Epsilon Grid Order: An Algorithm for
the Similarity Join on Massive High-Dimensional
Data. ACM SIGMOD, 379-388, 2001.

2]

[3] M.W. Blasgen and K.P. Eswaran. Storage and
Access in Relational Data Bases. IBM Systems

Journal, 16(4): 362-377, 1977.

J.-P. Dittrich and B. Seeger. Data Redundancy
and Duplicate Detection in Spatial Join Process-
ing. ICDE, 535-546, 2000.

J.-P. Dittrich and B. Seeger. GESS: a Scalable
Similarity-Join Algorithm for Mining Large Data
Sets in High Dimensional Spaces. SIGKDD, 47—
56, 2001.

[6] J.-P. Dittrich, B. Seeger, D.S. Taylor, and
P. Widmayer. Progressive Merge Join: A Generic
and Non-Blocking Sort-Based Join Algorithm.

VLDB, 2002.

G. Graefe. Heap-Filter Merge Join: A New Al-
gorithm For Joining Medium-Size Inputs. [EEE
Trans. Softw. Eng., 17(9):979-982, 1991.

10

[8]

[22]

[23]

G. Graefe. Query Evaluation Techniques for
Large Databases. ACM Computing Surveys,
25(2):73-170, 1993.

G. Graefe. Sort-Merge-Join: An Idea Whose
Time Has(h) Passed?. ICDE, 406-417, 1994.

P.J. Haas and J.M. Hellerstein. Ripple Joins for
Online Aggregation. ACM SIGMOD, 287-298,
1999.

7.G. Ives, D. Florescu, M. Friedman, A.Y. Levy,
and D.S. Weld. An Adaptive Query Execution
System for Data Integration. ACM SIGMOD,
299-310, 1999.

D.E. Knuth. The Art of Computer Programming,
volume III: Searching and Sorting. Addison Wes-
ley, second edition, 1998.

W. Li, D. Gao, and R.T. Snodgrass. Skew Han-
dling Techniques in Sort-Merge Join. ACM SIG-
MOD, 169-180, 2002.

G. Luo, J.F. Naughton, and C. Ellmann. A Non-
blocking Parallel Spatial Join Algorithm. ICDE,
2002.

M. Negri and G. Pelagatti. Join during merge: An
improved sort based algorithm. IPL, 21(1):11-16,
1985.

J.A. Orenstein. Spatial Query Processing in an
Object-Oriented Database System. ACM SIG-
MOD, 326-336, 1986.

J.A. Orenstein. An Algorithm for Computing the
Overlay of k—Dimensional Spaces. SSD, 381-400,
1991.

J.M. Patel and D.J. DeWitt. Partition Based
Spatial-Merge Join. ACSM SIGMOD, 259-270,
1996.

L. Raschid and S.Y.W. Su. A Parallel Process-
ing Strategy for Evaluating Recursive Queries.
VLDB, 412-419, 1986.

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin,
R.A. Lorie, and T.A. Price. Access Path Selec-
tion in a Relational Database Management Sys-
tem. ACM SIGMOD, 23-34, 1979.

K. Shim, R. Srikant, and R. Agrawal. High-
Dimensional Similarity Joins. ICDE, 301-313,
1997.

T. Urhan and M.J. Franklin. XJoin: A
Reactively-Scheduled Pipelined Join Operator.
Data Engineering Bulletin, 23(2):27-33, 2000.

A.N. Wilschut and P.M.G. Apers. Pipelining in
Query Execution. Conference on Databases, Par-

allel Architectures and their Applications, Miami,
USA, 68-77, 1991.

A Proofs

Proof of Lemma 1 (a) The regular leaves have

size M by definition. The very first node evalu-
ated takes size M /2 subsets from each of R and
S. Its parent, the bottom full level JOIN-DURING-
MERGE node, also takes size M /2 subsets from
each, and merges these results with those from
the first node, getting size M subsets from each.

(b) Every regular parent node merges the re-
sults from each of its children, which are one full
level down in the tree.

(c) This holds at the bottom level of the tree
by (a). Intermediate level JOIN-DURING-MERGE
nodes are arranged to have enough regular chil-
dren nodes to match the size of the sets of their
child JOIN-DURING-MERGE node: first one R
and S node are needed, then two, four, etc.
Thus, each JOIN-DURING-MERGE node doubles
the size of its child JOIN-DURING-MERGE node.
After log, F' — 1 such intermediate levels, the next
(full level) JOIN-DURING-MERGE node doubles
the size again, bringing that node to have F' times
larger subsets of R and S than the JOIN-DURING-
MERGE node one full level down. These sets will
again match in size with the regular nodes on the
same level by (b). O

Proof of Lemma 2 The leaves are associated
with size M subsets from R or S. Going up + full
level merges, the nodes will be associated with
size M F* subsets. When i = logp %, MF! =N,
which matches the size of the root node sets. The
root is level 0, so the lowest merge level is level
log % -1. O
Proof of Lemma 3 (a) This holds immediately
from Lemmas 1 and 2.

(b) This holds by (a) and from the proof of
Lemma l.c. O

Proof of Lemma 4 After level i, the N/F*
(Lemma 3.a) data associated with a regular node
has undergone log % —1 merges (Lemma 2). For
each merge level within the node’s subtree, all of
the data is read and written, at n/F’ reads and
writes each. All data of the subtree is also read
and written within the leaves of the subtree. O

Proof of Lemma 5 (a) The JOIN-DURING-
MERGE node is associated with size N/F’ sized
sets from each of R and S (Lemma 3.a), and all
of this data is read once, merged (no I/O), and

11

output in two sorted lists.

(b) As in (a), except the subsets are of size
2/N/F" (Lemma, 3.b).

(c) The node has 4 children nodes (two from R,
two from S) of size N/F*! each, and all data is
read, merged (no I/0), and written. O

Proof of Lemma 6 (a) The very first node
evaluated (the subleaf) reads two sets of M/2
unsorted data, and writes two sets of M sorted
data, for 2m total I/O operations. The second
node evaluated, the first full-level JOIN-DURING-
MERGE node, does the same, and also reads and
writes the data from the first node, for 4m I/0O
operations, and 6m total in this subtree.

(b) Within the subtree, we will sum the I/O
operations for the subtrees rooted one full level
down, the root node, the intermediate level JOIN-
DURING-MERGE nodes evaluated since the last
full level nodes, and the last bookkeeping node.
We will use induction on the subtree rooted at
the JOIN-DURING-MERGE node one level down,
which uses T'[i + 1] I/O operations. The tree has
2(F — 1) regular subtrees (split between type R
and S) one full level down (which can be seen
indirectly by Lemmas 1.c and 3), and to evaluate
each uses (logp & — (i+1)+1)2n/F**1 1/O opera-
tions (Lemma 4), for 4n(F —1)(logp £ — i) /Fi+?
total. By Lemma 5, the numbers of I/O oper-
ations used by the root node, the intermediate
level JOIN-DURING-MERGE nodes, and the book-
keeping node are 4n/F", Z}::giFfl 2k4n | FiH! =
(F —2)4n/F**1 and 8n/F'*! respectively. Sum-
ming these 3 terms gives 8n/F'. With the sub-
trees, this gives the recursive equation:

dn(F — 1)(logp & —i) 8n
Fri+l F
Proof by induction follows. For the base case,
the recursive equation with T[log %] = 6m gives
Tllogp % —1]=12Fm+2m. O
Proof of Lemma 7 For integer j,k and
0 <7 <loggF and 1 < a < 2, let X =
a2 FFM /2. Tf j = 0 and a = 1, the algorithm
needs 42 ((|logp 2¥| + 1/2) and the inequality
holds, so assume that 5 > 0 or & > 1. There
will be ZX leaves in the tree (size M each), which

T[] = T[i + 1] +

are spread between two levels. At most FL108r 5

can be on the higher of the two levels, and each of

these will undergo |logp %J merges. The data in

these leaves is read and written at the leaves, and
within every merge level (without a write at the
root), which will use 2mFl°gr %J(LlogF Z)+
1/2) I/O operations. The bottom level will
contain at least % — pllogr 57) leaves, and
these will undergo one extra level of merges, for
am(ZX — Flosr 51 ([logs 25 +3/2) 1/O oper-
ations. Summing these two and cancelling terms,
we get 4% (|logp 2X] + 3/2) — 2mFloer 51 af
least as large as the number in the lemma. O
Proof of Lemma 8 Define integers 4, such
that X = 20 (= 21F°8r 3 1M) for 0 < j <
logy F'. To analyze X elements, PMSJ must com-
plete 5 JOIN-DURING-MERGE nodes following full
level i. (If 7 = 0, it must just complete the full
level JOIN-DURING-MERGE node.) Summing the
I/O operations needed to perform the subtrees
rooted at the full level (T'[i]+2(27 —1)(logp 2 —i+
1)2n/F* by Lemma 4) and any intermediate level
JOIN-DURING-MERGE nodes (}7_, 2¥4n/F' =
(27 — 1)8n/F* by Lemma 5.b), a total of T'[i] +
4n(27 — 1)(logp & — i + 3)/F' 1/O operations
are used. Filling in T[i] from Lemma 6 and
telescoping the summation terms, this is fewer

than 42;,?(logF N —i+3)— % + %. Com-
bining the last terms and making replacements
(2;? = %Yand UO%F %J = IOEFZ% — i) gives
at least 4% ([logp 47] + 3 — W_—l)) Finally,

X/2B = mFUogr %J, and we assume that F' > 2,
so the inequality holds.

Comparing Lemma 8 to 7, the extra I/O op-
erations come from 2X/B writes for last JOIN-
DURING-MERGE node (which are piped to the
next level here, but not in [15]), and from the
additional JOIN-DURING-MERGE nodes near the
top of the tree, which do not use their full fan-
in, causing about 2X/B extra reads and writes
each. O

Proof of Lemma 9 Any join result from the
X? possibilities will be reported. By assump-
tion, the probability of a successful join for each
is Z/N?. O

12

