
iMeMex: Escapes from the Personal Information Jungle

Jens-Peter Dittrich Marcos Antonio Vaz Salles Donald Kossmann Lukas Blunschi

Institute of Information Systems
ETH Zurich

8092 Zurich, Switzerland

dbis.ethz.ch | iMeMex.org

Abstract

Modern computer work stations provide thou-
sands of applications that store data in >100.000
files on the file system of the underlying OS.
To handle these files data processing logic is re-
invented inside each application. This results in
a jungle of data processing solutions and a jungle
of data and file formats. For a user, it is extremely
hard to manage information in this jungle. Most of
all it is impossible to use data distributed among
different files and formats for combined queries,
e.g., join and union operations. To solve the prob-
lems arising from file based data management, we
present a software system called iMeMex as a
unified solution to personal information manage-
ment and integration. iMeMex is designed to in-
tegrate seamlessly into existing operating systems
like Windows, Linux and Mac OS X. Our system
enables existing applications to gradually dispose
file based storage. By using iMeMex modern op-
erating systems are enabled to make use of so-
phisticated DBMS, IR and data integration tech-
nologies. The seamless integration of iMeMex
into existing operating systems enables new appli-
cations that provide concepts of data storage and
analysis unseen before.

1 Introduction
Modern computer workstations like PCs and Macintosh
computers provide a myriad of different applications. Each
of these applications processes data in some way and stores
that data in files on the file system of the underlying oper-
ating system.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Example (Stock Data): A text fragment may contain un-
structured information like in the following example:

Warehouse Z contains 56 boxes of product X
as well as 45 boxes of product Y.

This kind of unstructured information is easy to read for
a human reader. For a machine, however, the semantics of
the above sentence is hard to extract. For this reason, infor-
mation systems store data in a structured format wherever
possible. The following text fragment contains the same
information in a structured format:

#stock of warehouse Z
#product, stock
X, 56
Y, 45

Unfortunately, not every text fragment can be trans-
formed into a structured representation. For this reason,
XML was created as a means to structure a document at
least partially. This semi-structured data may represent
table-like as well as hierarchical data:

<stock>
<product>
<name> X </name>
<stock> 56 </stock>

</product>
<product>
<name> Y </name>
<stock> 45 </stock>

</product>
</stock>

Obviously, XML documents contain a lot of redundant
information. Nevertheless, the main advantage of this for-
mat is the fact that it can be generated and processed by a
growing number of applications.

Another method for storing textual data is to make use
of binary file formats. E.g., Office applications like Word
and PowerPoint store data using proprietary file formats.
These files contain the actual data, meta data, formatting
instructions and undo information. The drawback of using
binary files is that these formats can only be processed by a
small number of associated applications. This inhibits data
exchange and integration with other applications.



1.1 Problem Statement

Desktop computers use file based storage to store infor-
mation. A typical desktop computer contains hundreds of
thousands of files1 using hundreds of different file formats.
This file based storage leads to a variety of problems:

1. No or difficult data exchange among different applications
2. No central service that manages data on the desktop and pro-

vides query services on that data
3. No possibility to join data stored in heterogeneous files
4. No automatic recovery of application data in case of power,

hard disk or other hardware failures
5. No support for automated backup of data
6. No support for automated versioning and replication of data
7. No support for concurrent access to files or fragments of

files
8. No support for personalized, context-aware search nor filter-

ing

The major reason for this unsatisfying situation is due
to the fact that each application reimplements its own
data processing algorithms. In many cases, these algo-
rithms are just simple variants of long-matured DBMS al-
gorithms. Algorithms that have been shipped with DBMS
for decades.

1.2 Consequences

In summary, when trying to manage personal information
on a desktop computer, today’s users are confronted with
the following problems:

1. A desktop computer is a jungle of information and data pro-
cessing solutions.

2. A desktop computer is a jungle of unsatisfying solutions for
recovery, backup, versioning and synchronization.

3. It is hard to find and store information in this jungle.

2 Related Work
2.1 Related Literature

Personal Information Management (PIM) has recently been
identified to be of high interest for DB research [5, 1].
Kersten et.al. [5] state that Mister Average is nowadays
confronted with a dozen of databases of different formats.
Currently, it is not even possible to perform simple joins
among those different databases. Therefore, the authors
strengthen the need to provide means to integrate that per-
sonal data. The Lowell report [1] considers information
integration as one of the key problems of modern infor-
mation systems. The authors state that the distribution of
sensors and datasets throughout the world breaks the ETL
paradigm traditionally applied by information integration
tools. Therefore, new approaches to information integra-
tion are required. Recently, Dong et.al. [3] propose a PIM
system that provides automatic annotations of data. The
proposed system tries to generate semantic associations
which can then be browsed by the user. Halevy et.al. [4]

1The personal computers of the authors contain on average more than
700.000 files — not counting network folders.

claim that most of the world’s data lies outside DBMSes.
The authors discuss the structure chasm between the struc-
tured world of the DBMS and the unstructured world of
files.

2.2 Why WinFS and Tiger are not enough

There are two approaches to solving the problems de-
scribed above:

The first approach is to replace the file system of the op-
erating system by a DBMS. This is the strategy of proposals
like WinFS2. The core idea of WinFS is to store meta data
and data in a relational database whenever possible. How-
ever, the WinFS approach has several drawbacks:

1. WinFS is focused on relational data. All data ‘items’ are
mapped to rows in a database. XML data is only treated as
a second class citizen.

2. Only if the application developer is willing to provide a
schema, application data inside files will be used for query
processing.

3. Results are always returned as a list of items. This is not
beneficial if a user executes a query that returns a large XML
document. That document would then be represented as a
single item.

4. WinFS is based on a pull-based RDBMS. Push-based oper-
ators, however, which are needed to provide efficient stream
processing, are not supported.

5. WinFS does not provide a generic plugin-concept to extend
its functionality.

6. WinFS is platform specific.

The second approach is to index all files of a system by
a search engine. Currently, only Mac OS X Tiger ships
with a built in search engine. For other platforms add-ons
like Google Desktop Search are available. Though search
engines perform textual keyword searches very efficiently,
they do have some drawbacks. One is that the results pro-
vided by the search engine are unstructured information,
i.e., a simple list of documents that match. Although docu-
ments that contain keywords inside tables are also reported
as result documents, the table structure is then neither ex-
ploited for the search nor for postprocessing (e.g. ranking)
the results. Therefore it is impossible to further process the
result list of the search engine by using generic operations
like join and union. Since this integration aspect is not ex-
ploited by current search engine technology, a rich source
of information is wasted.

3 iMeMex: As We May Store
In this Section, we introduce the iMeMex3 system as
the unified solution to personal information management.
iMeMex enables the joint analysis of different kinds of
data on a user’s desktop computer. In order to achieve this

2Note that WinFS will only become available after the release of the
new Windows release named ‘Longhorn’. The latter is scheduled only for
end of 2006.

3The name is an abbreviation of integrated memex where memex refers
to the vision presented in [2].



NTFS,
hpfs,
ext2

Operating
System

iMeMex

Applications

File System

Editors, Document Processors, Spreadsheets, Imaging Apps, IDEs, Email, Calendars, etc.

DBMS

Resource

DB Interface

WSDL Handler

Jetty HTTP-Server

..
.

Loader

Hot

Plugin

iMeMex Java Interface

Plugin Container

request response

iMeMex Java Interface

DAV Handler

Windows, Mac OS X, Linux

P
h
ys

ic
a
lr

e
so

u
rc

e

P
lu

g
in

iM
e
M

e
x

C
o
lle

ct
io

n

P
lu

g
in

Q
u
e
ry

D
is

p
a
tc

h
e
r

P
lu

g
in

F
u
ll

Te
xt

S
e
a
rc

h

P
lu

g
in

F
o
rm

a
t
C

o
n
ve

rt
e
r

P
lu

g
in

X
Q

u
e
ry

P
lu

g
in

Figure 1: The architecture of the iMeMex personal information management system

goal, iMeMex provides an additional persistence and anal-
ysis layer on top of the file system provided by the OS. This
persistence and analysis layer provides storage and analy-
sis services that differ fundamentally from todays file based
storage. In the long run this layer will replace existing file
systems.

3.1 OS Integration

Figure 1 gives an overview on the integration of iMeMex
into the host operating system. iMeMex resides on the
same level as the file systems of the underlying operating
system. The entire functionality of iMeMex is exposed to
other applications through a WebDAV interface. The rea-
son we choose WebDAV is that this protocol is already sup-
ported by a large number of applications (Eclipse, Word,
etc.) as well as operating systems (Windows, Linux, Mac
OS X). The WebDAV protocol is usually used to mount
web-based file repositories on local machines. For the user
these repositories then look like ordinary file folders.
iMeMex will also provide such kind of folder view. By

replacing the users home directory folder with an iMeMex
WebDAV folder the iMeMex system gains full control of
the user’s files4. Like that iMeMex does neither require
special file import and export coding nor synchronization
rules. The system seamlessly integrates into existing oper-
ating systems.

In contrast to ordinary WebDAV folders, the iMeMex
folder view provides two kinds of resources5: first, re-
sources that were added to the iMeMex repository (physi-
cal resources), and second, resources that display informa-
tion generated by the iMeMex system (virtual resources).

4Note, that in most cases the iMeMex server will reside on the local
desktop computer — just like the native file systems of the OS. For other
applications, however, the iMeMex server might be located on a remote
machine.

5In the following, we assume that files and directories are just special
resources. A directory is a collection of resources.

The virtual resources provide meta data, structured views
on the physical resources, starting points for search opera-
tions, generated links to related content and so on.

3.2 Architecture

Figure 1 shows the architecture of the iMeMex system.
Our system consists of three major components:

1. HTTP-Server: A Jetty HTTP-Server is used to han-
dle DAV-requests. We have extended Jetty by a han-
dler that provides support for WebDAV level 2. A fu-
ture version of our system will also contain a WSDL
handler. The WSDL interface will provide direct
application support for storing and querying semi-
structured and structured data. In order to access
that feature, however, applications would have to be
changed.

2. DBMS: An off-the-shelf open-source DBMS is used.
In addition, the DBMS is used to provide efficient
storage, indexing and search on structured data. Our
current implementation uses Postgres 8.0.

3. Plugin Container: The Plugin Container is the heart
of iMeMex. That mechanism can easily be used to
extend the functionality of our system. The plugin
container registers plugins which may subscribe to in-
coming messages. Note that plugins are automatically
loaded into the system by a Hot Plugin Loader. This
means we do not have to restart our system when a
new plugin becomes available.

3.3 Plugins

iMeMex ships [6] with an inital set of important plugins:

1. Physical Resource PI: provides information on avail-
able resources (e.g., files, XML twigs or tables)

2. iMeMex Collection PI: provides an initial set of vir-
tual resources (like meta data, ‘iMeMex’ folder, etc.)



3. Query Dispatcher PI: support for query processing
and views (e.g., information integration and filtering)

4. Full Text Search PI: full text search for all physical
resources handled by iMeMex (e.g., desktop search)

5. Format Converter PI: format transformation rou-
tines (like Excel to XML, etc.)

6. XQuery PI: support for XQuery

4 Description of the Demo
The demo will present the core architecture of iMeMex.
We demonstrate the seamless integration of our system
into standard operating systems as well as the benefits of
iMeMex in terms of personal information management.

4.1 Use-Case: Operating System Integration

Figure 2: A file view provided by iMeMex

We will demonstrate how iMeMex seamlessly inte-
grates into the host operating system. Figure 2 shows an
example OS folder managed by iMeMex. The Figure pro-
vides three different views on the same folder ‘Students’.
The upper-left window shows that the folder contains three
files: ‘List of Students.doc’, ‘Research Topics.txt’ and ‘The-
sis Topics.xls’. In addition, the ‘Students’ folder contains a
subfolder ‘iMeMex’ which is a virtual resource provided
by our system. If we expand that ‘iMeMex’ folder we re-
ceive the window in the lower left of Figure 2. That win-
dow shows that the ‘iMeMex’ folder displays a subfolder
for each physical file — each of them named like the phys-
ical file. If we expand two of these subfolders we receive
the window on the right of Figure 2. We see that for each
physical file, iMeMex provides a rich source of informa-
tion: 1. a subfolder providing an abstract folder view on the
data, 2. a subfolder containing meta data, and 3. a subfolder
containing history and versioning information for that file.
In addition, alternative views on the data are provided like:
4. a text view (txt), and 5. an XML view (xml). Note that the
contents of virtual resources are only computed on demand,
i.e., if an application or the user accesses that resource.
Also note, that the list of virtual resources can easily be
extended by deploying appropriate plugins to iMeMex.

4.2 Use-Case: Views on the Desktop

We will demonstrate that iMeMex strongly facilitates
query processing on heterogeneous information sources.
This is achieved by providing views on the desktop. Those
views may contain structured, unstructured as well as semi-
structured information. We will demonstrate how to use
our system to create a view (a virtual resource) on a set of
heterogeneous files. The join processing inside that view is
performed using XQuery. Note, that we do not materialize
the contents of views in advance. A view is only computed
if the content of that view gets requested by the user or an
application. The view is defined in a .query file. That file
contains the definition of a view either in XQuery, SQL, or
as a keyword search. In addition, the .query file defines
the output format of a view. For instance, we could define a
view named ‘Student Information.query’, defining excel
as the output format. Then, iMeMex automatically creates
a result file named ‘Student Information.xls’:

The content of that file (the result to the query) is only com-
puted when the user tries to read that file.

5 Conclusions
A modern desktop computer is a jungle of information and
data processing solutions. For a user it is very hard to or-
ganize and query information in this jungle. We have pre-
sented the iMeMex system as a generic solution to taming
the jungle. We have shown that iMeMex seamlessly in-
tegrates into existing desktop operating systems enabling
them to make use of sophisticated DBMS, IR and infor-
mation integration technology. As part of future work, we
plan to extend iMeMex to integrate web content (like RSS
feeds) and streams. In addition, we plan to study P2P net-
works of iMeMex instances.

References
[1] S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, and oth-

ers. The Lowell Database Research Self Assessment. CoRR,
cs.DB/0310006, 2003.

[2] V. Bush. As we may think. Atlantic Monthly, 1945.

[3] X. Dong and A. Y. Halevy. A Platform for Personal Information Man-
agement and Integration. In CIDR, 2005.

[4] A. Y. Halevy, O. Etzioni, A. Doan, Z. G. Ives, J. Madhavan, L. Mc-
Dowell, and I. Tatarinov. Crossing the Structure Chasm. In CIDR,
2003.

[5] M. L. Kersten, G. Weikum, M. J. Franklin, D. A. Keim, A. P. Buch-
mann, and S. Chaudhuri. A Database Striptease or How to Manage
Your Personal Databases. In VLDB, 2003.

[6] http://www.iMeMex.org. Project web-site. publicly available
download is scheduled for Q4 2005.


