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ABSTRACT

MapReduce is a computing paradigm that has gained a lot of at-
tention in recent years from industry and research. Unlike paral-
lel DBMSs, MapReduce allows non-expert users to run complex
analytical tasks over very large data sets on very large clusters
and clouds. However, this comes at a price: MapReduce pro-
cesses tasks in a scan-oriented fashion. Hence, the performance of
Hadoop — an open-source implementation of MapReduce — often
does not match the one of a well-configured parallel DBMS. In this
paper we propose a new type of system named Hadoop++: it boosts
task performance without changing the Hadoop framework at all
(Hadoop does not even ‘notice it’). To reach this goal, rather than
changing a working system (Hadoop), we inject our technology at
the right places through UDFs only and affect Hadoop from inside.
This has three important consequences: First, Hadoop++ signifi-
cantly outperforms Hadoop. Second, any future changes of Hadoop
may directly be used with Hadoop++ without rewriting any glue
code. Third, Hadoop++ does not need to change the Hadoop in-
terface. Our experiments show the superiority of Hadoop++ over
both Hadoop and HadoopDB for tasks related to indexing and join
processing.

1. INTRODUCTION

1.1 Background

Over the past three years MapReduce has attained considerable
interest from both the database and systems research community [7,
13,23, 15, 16, 12, 3, 20, 8, 19, 22, 14, 4, 9, 6].

There is an ongoing debate on the advantages and disadvantages
of MapReduce versus parallel DBMSs [1, 11]. Especially, the
slow task execution times of MapReduce are frequently criticized.
For instance, [16] showed that shared-nothing DBMSs outperform
MapReduce by a large factor in a variety of tasks.

Recently, some DBMS vendors have started to integrate MapRe-
duce front-ends into their systems including Aster, Greenplum, and
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Vertica. However, these systems do not change the underlying ex-
ecution system: they simply provide a MapReduce front-end to a
DBMS. Thus these systems are still databases. The same holds
for a recent proposal from VLDB 2009 [3]: HadoopDB. It com-
bines techniques from DBMSs, Hive [20], and Hadoop. In sum-
mary, HadoopDB can be viewed as a data distribution framework
to combine local DBMSs to form a shared-nothing DBMS. The re-
sults in [3] however show that HadoopDB improves task processing
times of Hadoop by a large factor to match the ones of a shared-
nothing DBMS.

1.2 Research Challenge

The approach followed by HadoopDB has severe drawbacks.
First, it forces users to use DBMSs. Installing and configuring
a parallel DBMS, however, is a complex process and a reason
why users moved away from DBMS in the first place [16]. Sec-
ond, HadoopDB changes the interface to SQL. Again, one of the
reasons of the popularity of MapReduce/Hadoop is the simplic-
ity of its programming model. This is not true for HadoopDB.
In fact, HadoopDB can be viewed as just another parallel DBMS.
Third, HadoopDB locally uses ACID-compliant DBMS engines.
However, only the indexing and join processing techniques of the
local DBMSs are useful for read-only, MapReduce-style analy-
sis. Fourth, HadoopDB requires deep changes to glue together the
Hadoop and Hive frameworks. For instance, in HadoopDB local
stores are replaced by local DBMSs. Furthermore, these DBMSs
are created outside Hadoop’s distributed file system thus supersed-
ing the distribution mechanism of Hadoop. We believe that manag-
ing these changes is non-trivial if any of the underlying Hadoop or
Hive changes'.

Consequently, the research challenge we tackle in this paper is as
follows: is it possible to build a system that: (1) keeps the interface
of MapReduce/Hadoop, (2) approaches parallel DBMSs in perfor-
mance, and (3) does not change the underlying Hadoop framework?

1.3 Hadoop++

Overview. Our solution to this problem is a new type of sys-
tem: Hadoop++. We show that in terms of query processing
Hadoop++ matches and sometimes improves the query runtimes
of HadoopDB. The beauty of our approach is that we achieve
this without changing the underlying Hadoop framework at all,
i.e. without using a SQL interface and without using local DBMSs
as underlying engines. We believe that this non-intrusive approach

'A simple example of this was the upgrade from Hadoop 0.19 to
0.20 which affected principal Hadoop APIs.
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fits well with the simplicity philosophy of Hadoop.

Hadoop++ changes the internal layout of a split — a large hori-
zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)

(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework ar all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan

The Hadoop Plan is shaped by three user-defined parameters
M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L (' ) and P subplans H1-H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans (' ).
Let’s analyze The Hadoop Plan in more detail:

Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input 7' horizontally into disjoint subsets T, ..., Tj.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T,...,Ts. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 different
data nodes with subplans H1-H4. Replicas are stored on different
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on different nodes.

Map Phase. In the map phase each map subplan M1-M4 reads a
subset of the data called a splir® from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks 7', and T's and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].



on a partitioning UDF mem. By default mem creates spills of size
80% of the available main memory. Each spill is logically parti-
tioned (LPart) into different regions containing data belonging to
different reducers. For each tuple a shuffle UDF sh determines its
reducer’. We use —» to visualize the logically partitioned stream.
In the example — as we have only two reducers — the stream is
partitioned into two substreams only. Each logical partition is then
sorted (Sort) respecting the sort order defined by UDF cmp. After
that the data is grouped (SortGrp) building groups as defined by
UDF grp. For each group MMap* calls UDF combine which pre-
reduces the data [10]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files
are then retrieved from disk and merged (Merge). Again, we apply
SortGrp, MMap and combine. The result is stored back on disk
(Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3
looks different. This asymmetry may occur if a mapper subplan
(here: M3) consumes less input data and/or creates less output data
than other subplans (here: M1). In this case all intermediate data
may be kept in main memory in that subplan. In any case all output
data will be completely materialized on local disk (Store).
Shuffle Phase. The shuffle phase redistributes data using a parti-
tioning UDF sh. This is done as follows: each reducer subplan (R1
and R2 in the example) fetches the data from the mapper subplans,
i.e. each reduce subplan has a Fetch operator for each mapper sub-
plan. Hence, in this example we have 2 x 4 = 8 Fetch operators
(see for instance R1). For each mapper subplan there is a PPart
operator with R outgoing arrows —. This means, the streams do
not represent logical partitions anymore but are physically parti-
tioned (see for instance M1). The reducer subplans retrieve the
input files entirely from the mapper subplans and try to store them
in main memory in a Buffer before continuing the plan. Note that
the retrieval of the input to the reduce phase is entirely blocking.
If the input data does not fit into main memory, those files will be
stored on disk in the reducer subplans. For instance, in R1, the in-
put data from M1 and M2 is buffered on disk, whereas the input
from M3 and M4 is directly merged (Merge) and then stored. Af-
ter that the input from M1 and M2 and the merged input from M3
and M4 is read from disk and merged. Note that if the input to a
reducer is already locally available at the reducer node, Fetch may
be skipped. This may only happen if the previous mapper subplan
was executed on the same node. Also notice that PPart uses the
same shuffle UDF sh as used inside a mapper subplan.

Reduce Phase. Only after a single output stream can be produced,
the actual reduce phase starts. The result of the Merge is grouped
(SortGrp) and for each group MMap calls reduce. Finally, the
result is stored on disk (Store). The MapReduce framework does
not provide a single result output file but keeps one output file per
reducer. Thus the result of MapReduce is the union of those files.
Notice that all UDFs are optional except map. In case reduce was
not specified, the reduce and shuffle phases may be skipped.

2.2 Discussion

(1.) In general, by using a hard-coded, operator-free, query-
execution pipeline, Hadoop makes it impossible to use other more
efficient plans (possibly computed depending on current workload,
data distribution, etc.)

(2.) At the mapper side, a full-table scan is used as the only access
method on the input data. No index access is provided.

3By default MapReduce (and also Hadoop) implement UDF sh
using a hash partitioning on the intermediate key [10].

4 A multimap operator MMap maps one input item to zero, one, or
many output item(s). See Appendix B.6 for details.

(3.) Grouping is implemented by sorting.

(4.) Several MMap operators executing combine() functions
(which usually perform the same as a reduce () function [10]) are
inserted into the merge tree. This is an implementation of early du-
plicate removal and aggregation [5, 21]. For merges with less than
three input spills no early aggregation is performed.

(5.) The Hadoop Plan is highly customizable by exchanging one
of the ten UDFs block, split, itemize, mem, map, sh, cmp, grp,
combine, and reduce.

In summary, one could consider The Hadoop Plan a distributed
external merge sort where the run (=spill) generation and first level
merge is executed in the mapper subplan. Higher level and final
merges are executed in the reducer subplans. The sort operation is
mainly performed to be able to do a sort-based grouping — but this
interesting order may also be exploited for applications bulkload-
ing indexes (e.g. inverted lists or B*-trees). The initial horizon-
tal partitioning into disjoint, equally-sized subsets resembles the
strategy followed by shared-nothing DBMSs: in a first phase, the
different subsets can be processed fully independently. In a second
phase, intermediate results are horizontally repartitioned among the
different reducers and then merged into the final result sets.

3. TROJAN INDEX

The Hadoop Plan as shown in Figure 1 uses a Scan operator
to read data from disk. Currently, Hadoop does not provide in-
dex access due to the lack of a priori knowledge of schema and
the MapReduce jobs being executed. In contrast, DBMSs require
users to specify the schema; indexes may then be added on demand.
However, if we know the schema and the anticipated MapReduce
jobs, we may create appropriate indexes in Hadoop as well.

Trojan Index is our solution to integrate indexing capability into
Hadoop. The salient features of our approach are as follows:

(1.) No External Library or Engine: Trojan Index integrates index-
ing capability natively into Hadoop without imposing a distributed
SQL-query engine on top of it.

(2.) Non-Invasive: We do not change the existing Hadoop frame-
work. Our index structure is implemented by providing the right
UDFs.

(3.) Optional Access Path: Trojan Index provides an optional index
access path which can be used for selective MapReduce jobs. The
scan access path can still be used for other MapReduce jobs.

(4.) Seamless Splitting: Data indexing adds an index overhead (~
8MB for 1GB of indexed data) for each data split. The new logical
split includes the data as well as the index. Our approach takes care
of automatically splitting indexed data at logical split boundaries.
Still data and indexes may be kept in different physical objects,
e.g. if the index is not required for a particular task.

(5.) Partial Index: Trojan Index need not be built on the entire split;
it can be built on any contiguous subset of the split as well. This is
helpful when indexing one out of several relations, co-grouped in
the same split.

(6.) Multiple Indexes: Several Trojan Indexes can be built on the
same split. However, only one of them can be the primary index.
During query processing, an appropriate index can be chosen for
data access.

We illustrate the core idea of Trojan Index in Figure 2. For
each split of data (SData T) a covering index (Trojan Index) is
built. Additionally, a header (H) is added. It contains indexed data
size, index size, first key, last key and number of records. Finally,
a split footer (F) is used to identify the split boundary. A user
can configure the split size (SData T) while loading the data. We
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation

Trojan Index is a covering index consisting of a sparse directory
over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation 7 over an attribute a; as follows:

INDEX.
map(key k, value v) -

[(getSplitIDQ) & prja[ (kdv),kav)]
reduce(key ik, vset ivs) —
[(ivs @ indexBuildery, (ivs))]

Index, (T) =

Here, prj,, denotes a projection to attribute a; and & denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation 7. The MapReduce client partitions the Relation 7' into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) — k.splitID % numPartitions 1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1,key k2) — compare(kl.a, k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1,key k2) — compare(kl.splitlD , k2.splitI D) 2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing

Consider a query g referencing an indexed dataset 7. We iden-
tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF

Input : JobConf job, Int numSplits
Output: logical data splits

1 FileSplit [] splits;
2 File [] files = GetFiles (job);
3 foreach file in files do
4 Path path = file.getPath();
5 InputStream in = GetInputStream(path);
6 Long offset = file.getLength();
7 while offset > 0 do
8 in.seek (offset-FOOTER_SIZE);
9 Footer footer = ReadFooter (in);
10 Long splitSize = footer.getSplitSize();
11 offset -= (splitSize + FOOTER_SIZE);
12 BlockLocations blocks = GetBlockLocations (path,offset);
13 FileSplit newSplit = CreateSplit (path,offset,splitSize,blocks);
14 splits.add (newSplit) ;
15 end
16 end

17 return splits;

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;
Key lowKey = job.getLowKey();
Global Key highKey = job.getHighKey ();
Int splitStart = split.getStart(Q);
Global Int splitEnd = split.getEndQ;
Header h = ReadHeader (split);
Overlap type = h.getOverlapType (lowKey,highKey);
Global Int offset;
if type == LEFT_.CONTAINED or type == FULL_CONTAINED or type ==
POINT_CONTAINED then
10 Index i = ReadIndex (split);
offset = splitStart + i.lookup (lowKey);
12 else if rype == RIGHT_.CONTAINED or type == SPAN then
13 | offset = splitStart;
14 else

XTI N AW -

// NOT_CONTAINED, skip the split;
offset = splitEnd;

17 end
18 Seek(offset);

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2-3). For each file we retrieve its path and the in-
put stream (Lines 4-5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6-8) and retrieve the split
size from them (Lines 9-10). We set the offset to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1-2)
from the job configuration and the split boundary offsets (Lines 3—
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key offset within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the offset to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13—15). Finally, we seek the offset within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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Algorithm 3: Trojan Index itemize.next UDF

Input : KeyType key, ValueType value
Output: has more records

if offset < splitEnd then
Record nextRecord = ReadNextRecord (split);
offset += nextRecord.size();
if nextRecord.key < highKey then
SetKeyValue (key, value, nextRecord);
return true;
end
end
return false;

S0 AU R W -

We check if the split offset is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF split may compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN

Efficient join processing is one of the most important features of
DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more effective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-
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tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:

(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to different relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.

(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shuffle phase, which is typically quite costly from
the network traffic perspective.

4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations 7' S (depicted green and blue in Figure 4). We use two head-
ers H, and Hj, one for each relation, to indicate the size of each co-
partition®. Given an equi-join predicate PJ(T,S) = (T.a; = S.b)),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning

Trojan Join co-partitions two relations in order to perform join
queries using map tasks only. Formally, we can express co-

partitioning as:
map(key k, value v) —

[(pri, (k®v),k@v)] ifinputk®v) =T,
[(prjb/_(k ®v),kdv)] ifinputtkdv)=S.
reduce(key ik, vset ivs) - [({ik} X ivs)]

CoPartitionai,bj(T,S) =3 {

Here, the helper input() function identifies whether an input
record belongs to T or S. Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} askey-value pairs. Here joinvalue is the
key having value either a; or b; depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grp UDFs. As aresult, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.

>Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.



Algorithm 4: Trojan Join itemize.next UDF

Input : KeyType key, ValueType value
Output: has more records

if offset < splitEnd then
if offset == nextHeaderOffset then
Header header = ReadHeader (split) ;
offset += header.size();
nextHeaderOffset = offset + header.getSplitSize();
end
Record nextRecord = ReadNextRecord (splir);
offset += nextRecord.size();
SetKeyValue (key, value, nextRecord);
return true;

NI N AR WN =

=
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end
return false;

-
[ 8]

4.2 Query Processing

A Trojan Join between relations 7" and S can be expressed as the
re-partitioned join operator shown in Appendix B.3 replacing map
with an identity function. Though join processing in this manner
is a considerable improvement, we still need to shuffle the data.
However, we actually do not need the shuffie phase as relations T
and S were already co-partitioned. Therefore, we present an opti-
mized variant of this join which requires only a single map without
a reduce. Hence, Hadoop++ may skip both the shuffle and the
reduce phase. The map function in Trojan Join is shown below:

set 8 = 0; key lk = null;
map(key k, value v) —
if (lk'= k) {
if ! first_incoming_pair(k,v) {
output : [crossproduct(T,’k,S;k) |
T}, ={(oriy(k®v),kev)| (kev) € fAif inputtk ®v) = T},
Sy = {(prjbi(ke)v),k@v) | (k®v) e B Aifinputtk®v) = S]]
}
B=lkov), lk=k

T >pyrs) S =

}
else {
output : none

B=pulkev}

}

To process a join query, our approach automatically splits the re-
quired data by identifying the split boundaries — using the footer
F — and creates a map task for each split. For this, we supply a
split UDF that identifies such boundaries (see Algorithm 1). We
also supply a UDF itemize that allows mappers to skip headers
in input splits. Algorithm 4 shows how UDF itemize computes
the next key-value pairs (‘items’). Here offset, splitEnd, and
header are global variables defined in the itemize.initialize func-
tion (similar to Algorithm 2). We check if the split offset is con-
tained in this split (Line 1). If yes, we check if the current offset
points to a header (Line 2) so as to skip the header (Lines 3-5).
We then set the key and the value to be fed to map and return true
(Lines 7-10), indicating there could be more records. In case the
offset is not within the end of split, we return false (Line 12).
This indicates that there are no more records.

The map function shown before starts by initializing a co-group
with the first (k, v)-pair. Thereafter, it keeps collecting in S the
records belonging to the same co-group i.e. the same join attribute
values. A different join attribute value indicates the beginning of
the next co-group in the data. Here, we make two assumptions:
first, records with the same join attribute value arrive contiguously,
which is realistic since the relations are co-grouped; second, in
contrast to previous MapReduce jobs, the map function maintains
a state (B, lk) to identify the co-group boundaries within a split.

DataSet

Indexed Co-Partitioned Split i

Figure 5: Indexed Co-partitioned Data Layout

When a new co-group starts, the map function classifies the records
in S into relations 7”7 and S’ based on their lineage and performs the
cross product between them by calling the local crossproduct
function. The result is emitted and g is reset to start collecting
records for the next co-group. This process is repeated until there
is no more incoming (k, v)-pair. To perform the cross product on
the last co-group, the map injects an end-of-split record after
the last record in each data split marking the end of that split. The
reduce may then output the join result over the last co-group. No-
tice that the final result of all of these co-partitioned joins is exactly
the same as the result produced by the re-partitioned join.

4.3 Trojan Index over Co-Partitioned Data

We can also build indexes on co-partitioned data. Trojan Join
may be combined with both unclustered and clustered Trojan In-
dexes. For instance, we can build an unclustered Trojan Index over
any attribute without changing the co-grouped data layout. Alterna-
tively, we can build a clustered Trojan Index by internally sorting
the co-partitioned data based on the index attribute. The internal
sorting process is required only when the index attribute is differ-
ent from the join attribute. For example, assume relations 7" and
S are co-partitioned and suppose we want to build a clustered Tro-
jan Index over a given attribute of relation 7. To achieve this, we
run the indexing MapReduce job as described in Section 3.1. This
job sorts the records from T based on the index attribute and stores
them contiguously within the split. The resulting data layout is il-
lustrated in Figure 5. Each split is separated by a split footer (F) and
has a header per relation (H, and H,), indicating the size of each co-
partition. In addition, a clustered Trojan Index and its header (H;)
is stored after the indexed relation (7') in the split. At query time,
we supply the UDF itemize function as before. However, we set
the constructor of itemize function as in Algorithm 3 in order to
provide index scan. Adapting Trojan Join processing for indexed
data is straightforward.

5. EXPERIMENTS

We evaluate the performance of Hadoop++ (i.e. Hadoop includ-
ing Trojan Index and Trojan Join) and compare it with Hadoop
and HadoopDB. Our main goal in the experiments is to show
that we can reach similar or better performance than Hadoop and
HadoopDB without relying on local DBMSs. We also show in §5.3
that Hadoop-++ still inherits Hadoop’s fault-tolerance performance.

5.1 Benchmark Setup

We ran all our experiments on Amazon EC2 large instances in
US-east location. Each large instance has 4 EC2 compute units (2
virtual cores), 7.5 GB of main memory, 850 GB of disk storage and
runs 64-bit platform Linux Fedora 8 OS. Throughout our perfor-
mance study we realized that performance on EC2 may vary. We
analyse this variance in detail in an accompanying paper [18]. Here
we executed each of the tasks three times and report the average of
the trials. We discard these assumptions to evaluate fault-tolerance
in §5.3. We report only those trial results where all nodes are avail-
able and operating correctly. To factor out variance, we also ran the
benchmark on a physical 10-node cluster where we obtained com-



parable results®. On EC2 we scale the number of virtual nodes:
10, 50, and 100. We compared the performance of Hadoop++
against Hadoop and HadoopDB. We used Hadoop 0.19.1 running
on Java 1.6 for all these three systems. We evaluated two variants
of Hadoop++ that only differ in the size of the input splits (256 MB
and 1 GB’). For HadoopDB, we created databases exactly as in [3].
Appendix D lists configuration details.

We used the benchmark and data generator proposed in [16] and
used in the HadoopDB paper [3]. We selected those tasks relevant
to indexing and join processing. For completeness, we also report
results of the other tasks in Appendix E. The benchmark creates
three tables: (1) Documents containing HTML documents, each of
them having links to other pages following a Zipfian distribution.
(2) Rankings containing references to Documents, (3) UserVisits
referencing Rankings. Both Rankings and UserVisits contain sev-
eral randomly generated attribute values. The sizes of Rankings
and UserVisits are 1 GB (18M tuples) and 20 GB (155M tuples)
per node, respectively. Please refer to [16] for details.

5.2 Analytical Tasks

5.2.1 Data Loading

As in [3] we show the times for loading UserVisits only; the
time to load the small Rankings is negligible. Hadoop just copies
UserVisits (20GB per node) from local hard disks into HDFS, while
Hadoop++ and HadoopDB partition it by destinationURL and in-
dex it on visitDate. Figure 6(a) shows the load times for UserVis-
its. For Hadoop++ we show the different loading phases: The data
loading into HDFS including conversion from textual to binary rep-
resentation, followed by the co-partioning phase (§ 4.1), and index
creation (§ 3.1). We observe that Hadoop++(256MB) has similar
performance as HadoopDB; Hadoop++(1GB), however, is slightly
slower. We believe this is because the loading process is CPU-
bound, thereby causing map tasks to slow down when processing
large input splits. However, this difference is negligible, as these
costs happen at data load time. This means these costs have to be
paid only once. Users may then run an unlimited number of tasks
against the data. The trade-off we observe is similar to the one seen
in any DBMS: the more we invest at data load time, the more we
might gain at query time. Thus, the more queries benefit from that
initial investment, the higher the overall gain. Overall, we conclude
that Hadoop++ scales well with the number of nodes.

5.2.2 Selection Task

This task performs a selection predicate on pageRank in Rank-
ings. We use the same selectivity as in [3, 16], i.e. 36,000 tuples per
node by setting the pageRank threshold to 10. The SQL queries and
MapReduce jobs used for the selection task are described in Ap-
pendix C.1. For this task, we run two variants of HadoopDB simi-
lar to the authors of HadoopDB [3]. In the first variant, each node
contains the entire 1 GB Rankings in a single local database. In
the second variant each node contains twenty partitions of 50 MB
each in separate local databases (HadoopDB Chunks). Figure 6(b)
illustrates the selection task results for all systems. We observe that
Hadoop++ outperforms Hadoop and HadoopDB Chunks by up to
factor 7, and HadoopDB by up to factor 1.5. We also observe that
Hadoop++(1GB) performs better than Hadoop++(256MB). This

®With a single exception: on the physical cluster for the selec-
tion task Hadoop++(1GB) was still faster than HadoopDB, but
Hadoop++(256MB) was slightly slower than HadoopDB.
"Unfortunately, we could not use split sizes beyond 1GB due to a
bug [2] in Hadoop’s distributed file system. We believe however
that runtimes using Trojan Join would improve even further.

is because Hadoop++(1GB) has much fewer map tasks to execute
and hence less scheduling overhead. Furthermore, its index cover-
age is greater. This allows it to get more data at once. These results
demonstrate the superiority of Hadoop++ over the other systems
for selection tasks.

5.2.3 Join Task

This task computes the average pageRank of those pages visited
by the sourcelP address that has generated the most adRevenue dur-
ing the week of January 15-22, 2000. This task requires each sys-
tem to read two different data sets (Rankings and UserVisits) and
join them. The number of records in UserVisits that satisfy the se-
lection predicate is ~134,000. The SQL queries and MapReduce
jobs used to perform the join tasks are shown in Appendix C.2.

Figure 6(c) illustrates results for each system when perform-
ing this join task. Again, we observe that Hadoop++ outperforms
Hadoop by up to factor 20. This is because Hadoop++ performs
an index-scan over UserVisits to speed up the selection predicate
and because Rankings and UserVisits were co-grouped at loading
time. More importantly, our results show that Hadoop++(1GB)
outperforms HadoopDB by up to factor 1.6. This is not the case
for Hadoop++(256MB), because it has less relevant data per input
split to join and more map tasks to process. Again, as discussed
in §5.2.1, these gains are possible, as we trade query performance
with additional effort at data load time, see Figure 6(a).

5.3 Fault-Tolerance

In this section we show results of two fault-tolerance experiment
which are similar to the one done in [3]. We perform the node
failures experiment as follows: we set the expiry interval, i.e. the
maximum time between two heartbeats, to 60 seconds. We chose
a node randomly and kill it after 50% percent of work progress.
We perform the straggler nodes experiment as follows: we run a
concurrent I/O-intensive process on a randomly chosen node so as
to make it a straggler node. We define the slowdown as in [3],
slowdown = @ % 100, where n is the query execution time with-
out failures and f is the execution time with a node failure. For
both series of tests, we set HDFS replication to 2.
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Figure 7: Fault Tolerance.

Figure 7 shows the results. As expected, we observe that
Hadoop++(256MB) has the same performance as Hadoop. How-
ever, we can see that while increasing the size of input splits
from 256 MB to 1 GB, Hadoop++ slows down. This is because
Hadoop++(1GB) has 4 times more data to process per input split,
and hence it takes more time to finish any lost task. Hence, we ob-
serve a natural trade-off between performance and fault-tolerance:
By increasing the input split size, Hadoop++ has better perfor-
mance but it is less fault-tolerant and vice-versa. We observe that
Hadoop++ is slower than HadoopDB for the node failures experi-
ments. This is because Hadoop++ needs to copy data from replica
nodes while HadoopDB pushes work to replica nodes and thus re-
quires less network traffic. For the straggler nodes experiment how-
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Figure 6: Benchmark Results related to Indexing and Join Processing

ever, Hadoop++ significantly outperforms HadoopDB. This is be-
cause HadoopDB sometimes pushes tasks to straggler nodes rather
than replica nodes. This slows down its speculative execution.

6. DISCUSSION & CONCLUSION

This paper has proposed new index and join techniques: Tro-
jan Index and Trojan Join, to improve runtimes of MapReduce
jobs. Our techniques are non-invasive, i.e. they do to require us
to change the underlying Hadoop framework. We simply need to
provide appropriate user-defined functions (and not only the two
functions map and reduce). The beauty of this approach is that we
can incorporate such techniques to any Hadoop version with no ef-
fort. We exploited this during our experiments when moving from
Hadoop 0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness
reasons. We implemented our Trojan techniques on top of Hadoop
and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outper-
forms Hadoop. Furthermore, for tasks related to indexing and join
processing Hadoop++ outperforms HadoopDB — without requir-
ing a DBMS or deep changes in Hadoop’s execution framework
or interface. We also observe that as we increase the split size,
Hadoop++ further improves for both selection and join tasks. This
is because the index coverage also increases. Performance of fault-
tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeoff between
runtime and fault tolerance of MapReduce jobs.

An important lesson learned from this paper is that most of the
performance benefits stem from exploiting schema knowledge on
the dataset and anticipating the query workload at data load time.
Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there
is no need to use a DBMS for this. Schema knowledge and an-
ticipated query workload may be exploited in any data processing
system.

In terms of Hadoop++’s interface we believe that we do not have

to change the programming interface to SQL: standard MapReduce
jobs — unaware of possible indexes and join conditions — may be
analyzed [6] and then rewritten to use the Trojan techniques pro-
posed in this paper.
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APPENDIX

A. EXECUTION STRATEGIES IN THE
FOUR SYSTEMS

The goal of this section is to show how the four systems to large
scale data analysis Parallel DBMS, MapReduce, Hybrid Approach,
and our proposal Hadoop++ process a simple analytical task. As
an example, consider we want to build an inverted buzzword search
index on a paper collection. The input data consists of unstructured
text documents each having a distinct Document /D (DID).

A.1 Parallel DBMS

We first have to define appropriate schemas in the PDBMS
using SQL. We need schemas for the input table as well for
the final output index. An appropriate schema for the input
may be Documents(DID: INT, term:VARCHAR) and InvertedIn-
dex(buzzword:VARCHAR, postingList:VARCHAR). Second, we
need to load the input text documents, tokenize them and for each
term we create an entry (DID,term) in Documents. Third, we call:

SELECT term, buildPostingList(DID) FROM Documents
WHERE isBuzzword(term) GROUP BY term;

This means, we only consider the buzzwords from Documents by
probing UDF isBuzzword, group the results on term, and for each
term we create a posting list by calling UDF buildPostingList.
Though this index creation seems simple in the first place, it usually
does not work out of the box. The user also needs to define how to
partition large input data sets over the different DBMS nodes. Fur-
thermore, setting up a PDBMS is non-trivial and requires skilled
DBAs as also observed in [16]3.

In terms of query processing, most shared-nothing systems strive
to partition the input data into balanced partitions at data load time.
If necessary, indexes are built locally on the data. Building these in-
dexes is possible only because the DBA has schema and workload
knowledge. Data sets may also be copartitioned to facilitate join
processing again exploiting schema knowledge. Additional join in-
dexes may speed up joins in case copartitioning is not possible. At
query time queries are simply split into subqueries and distributed
to each node to compute a subset of the result on the local nodes.
Intermediate results subsets are then sent to one or multiple merge
nodes which assemble the complete result set.

A.2 MapReduce

We need to define our map function as follows: map(key DID,
value content) — [(buzzword;, DID), ..., (buzzword,, DID)]. This
means an input document DID will be mapped to a sequence of
intermediate output tuples where each intermediate tuple contains
a buzzword and the original DID. Non-buzzwords are not output.
For each distinct buzzword in the document we generate a separate
output tuple. We define reduce as follows: reduce(key buzzword,
valueset DIDset) — [(buzzword & postinglist)]. reduce is called
once for each distinct buzzword in the set of intermediate tuples.
The second parameter DIDset contains a set of DIDs containing
that buzzword. Thus, the reduce function simply needs to form a
posting list of those DIDs in this case. Note that this is everything
one needs to define in order to build the inverted buzzword search
index on arbitrarily large input sets. Everything else will be handled
by the MapReduce framework.

I terms of task processing, MapReduce operates in three phases.
In the first phase (Map Phase), the framework runs a set of M map

8 Another example for this is the PDBMS Teradata: this company
always sets up and configures the system themselves at the cus-
tomer site to get the performance right.

tasks in parallel where each disjoint subset of the input file is as-
signed to a particular map task. A map task executes a map-call
on each input “record” and stores the output locally already parti-
tioned into R output files. This means that in total R X M files will
be generated in this phase. In the second phase (Shuftle Phase), the
output of the map tasks is grouped and redistributed. Grouping is
defined using a hash function sh defined on the intermediate key.
This guarantees that equal keys from different map tasks are as-
signed to the same reducer task. In the third phase (Reduce Phase),
a set of R reduce tasks are run in parallel. Each reduce tasks calls
reduce for each distinct intermediate key in its input and the set
of associated intermediate values. Each reduce tasks writes its out-
put to a single file. Thus the output to the MapReduce task will
be distributed over R files. See [10] for the original proposal. We
will discuss the processing strategy of MapReduce in more detail
in Section 2.

A.3 Hybrid Approaches

HadoopDB pushes the same SQL query as Parallel DBMS
(Section A.1) into local DBMSs in the Map Phase. The lo-
cal DBMSs in turn compute intermediate results to their local
SQL query. Each map task then simply outputs the set of tu-
ples [(buzzword,, DID), ..., (buzzword,, DID)] reported by each
local DBMS. Finally, HadoopDB uses the same reduce function
as MapReduce.

A.4 Hadoop++

Hadoop++ operates exactly as MapReduce by passing the same
key-value tuples to the map and reduce functions. However, simi-
larly to HadoopDB, Hadoop++ also allows us:

1. to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

2. to co-partition data so as to allow map tasks to compute joins
results locally at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB. However, in contrast to
the latter Hadoop++ does not force users to use SQL and DBMSs.

B. FROM RELATIONAL ALGEBRA TO
MAPREDUCE AND BACK

The goal of this section is to show that MapReduce and DBMSs
have the same expressiveness. We show that any relational alge-
bra expression can be expressed in MapReduce. Vice versa any
MapReduce task may be expressed in extended relational algebra.
‘We extend standard relational algebra by a multimap operator map-
ping an input item to a set of output items. As a consequence, we
conclude that both technologies have the same expressiveness.

This is a formal argument and does not imply that plans have to
be created physically like this. First, we show how to map relational
algebra operators to MapReduce (§ B.1 to B.5). Then, we show
how to map any MapReduce program to relational algebra (§ B.6).

B.1 Mapping Relational

MapReduce

We assume as inputs two relational input data sets 7 and S con-
taining items that are termed records. The schema of T is de-
noted sch(T') = (ay, .., ay), sch(S) = (b, .., b.) respectively where
ay,...ay and by, .., b, are attributes of any domain. In case no
schema is known for the data, the schema simply consists of a sin-
gle attribute containing the byte content of the item to process. In
the remainder of this paper we assume that input data sets are split

Operators to



into records according to the above definition. The subset of at-
tributes in sch(7") representing the key is named kr Csch(7’). The
remaining attributes sch(7') \ kr representing the value are named
vr, hence sch(T) = k; @ vy. This also holds for S and we use vg
and kg accordingly. Inputs and outputs to relational operators are
assumed to be duplicate-free sequences, i.e. duplicates are removed
unless specified otherwise (e.g. unionall). map is called for each
input record. Key and value are passed as separate parameters and
a sequence of intermediate (key, value)-pairs is returned:
map(key k, value v) = [(ik1,iv1), ..., (Kmgv)s Vimien))]-

The number of intermediate output records m(k, v) > 0 may vary
for different k and v. Similarly, reduce is called for each distinct
intermediate key ik. The set of intermediate values ivs having that
intermediate key is passed to reduce:

reduce(key ik, vset ivs) = [0V1, .., OVi(ikivs)]

Thus each reduce function produces a sequence of output val-
ues ovy, .., 0Vyik,ivs) Again the number of output values r(ik, ivs) > 0
may vary for different inputs. In many applications the output con-
tains a single value only, i.e. r(ik, ivs) = 1 V ik, ivs.

B.2 Unary operators

In the following we will show how to express relational alge-
bra operators using MapReduce. We use = to denote how to map
the left-hand side operator to a MapReduce job. The most simple
operator is . It can be expressed in MapReduce as follows:
PROJECTION (77).
map(key k, value v) — [(prja’_1 ety (kov),1)]

gy ay, (T) B
fin reduce(key ik, vset ivs) - [(ik)]

Here @ denotes that two attributes sets are concatenated to a
new schema. prj() projects a single record to attributes a;,, .., a;,.
Thus 7 is realized in map by concatenating the attributes of the key
and the value, projecting to the desired attributes, and outputting
the resulting records as the intermediate key. As value we output
“1”. reduce then simply outputs the intermediate key. Recall, that
reduce is only called once for each intermediate key. Thus our
definition of reduce removes all duplicates. Note that the RENAME
operator p may be defined analogously to .

The selection operator may be expressed as follows.

SELECTION (U') [k®v,1)] if Pkov),
op(T) > map(key k, value v) — none clse.
reduce(key ik, vset ivs) = [(ik)]

Here map examines each input record and passes it to the selec-

tion predicate P. If P holds, [(k®v, 1)] is output. Otherwise nothing
is output. reduce simply outputs the intermediate key.
Grouring (I'). We differentiate between grouping and aggrega-
tion. Grouping forms groups of records belonging together. For
instance, assume an input 7 with sch(T) = {a;,a;} and T =
{(3,2),(2,1),(1,3),(2,2),(3,4),(1,7)}. If we group T, we obtain
[, (T) = {(3,{2,4}),(1,{3,7}),(2,{2,1})}. Only an additional ag-
gregation would transform each group in a, into a new value.
Hence, grouping may be applied without aggregation.

map(key k, value v) —
[(Drjuil ety (K@), prjsch(T)\(ail ay (KO
reduce(key ik, vset ivs) = [(ik @ ivs)]

Topoad &

iy

This means map concatenates attributes of the key and the value
and projects them to the grouping attributes. These attributes are
used as the intermediate key. All remaining attributes form the in-
termediate value. reduce then outputs a single record for each
distinct intermediate key plus the set of values having that key.

AGGREGATION (y). Aggregation can be done by applying an aggre-
gation function agg([iv,,...,iv,]) — v in reduce. If those values
were formed by a previous grouping operator, we obtain the desired
result:
map(key &, value v) = [(k,v)]
Yaee (1) = {reduce(key ik, vset ivs) — [(ik ® agg(ivs))]

Another alternative is to combine both grouping and aggregation
into a single MapReduce task:
map(key k, value v) —
(®T s, ..z, kB V), PTIcnr\ gy, .ty ) (K B V)]
reduce(key ik, vset ivs) — [(ik ® agg(ivs))]

Vagg (r“fl Sty (T)) =

This means, we simply modify reduce to apply agg() to the out-
put valueset. Note that agg() may be any aggregate including trivial
ones such as MIN, MAX, SUM, AVG, and DISTINCT.

B.3 Binary Operators

MapReduce operates on a single input only. This means that a
binary operator cannot be modeled by considering two input files.
Therefore, in the following we consider the two inputs to be con-
tained in a single file and denote this as T'|S. When discussing indi-
vidual operators we denote this as T'|S, i.e., T is processed before S .
We use a function input(k @ v) — {T'|S} to determine whether k ® v
belongs to T or S. Technically, this function may be implemented
by attaching some metadata bit signaling its input to each record.
Recall that the precondition for union, intersect, and difference is
sch(T) = sch(S).

UNION (U). TUS = yaistinct (Tsenr)(T1S)) .

This means, we express union as a grouping plus a following
duplicate removal on intermediate values. This works as both input
sets are already contained in the same input file.

DIFFERENCE (\). map(key k, value v) - [(k @ v, 1)]
reduce(key ik, vset ivs)

T o\ S = . o . .

[(ik)] iflivs| = 1 Ainput(ik) = T,
{none else.

This means, in map we consider all attributes to be intermediate
keys. reduce tests whether the size of the intermediate valueset ivs
contains only a single “1” and ik belongs to input 7. Only if this
holds, we output ik. Otherwise nothing is output.

INTERSECTION (N). Obviously intersection may be expressed as 7'\
(T \ S) resulting in two MapReduce tasks. However, intersection
can also be expressed in a single MapReduce job:
map(key k, value v) — [(k® v, 1)]
reduce(key ik, vset ivs)
[(K)] if livs| = 2,
none else.

This mapping is similar to difference, however we only output
a record, if ivs contains two “17s. As both input sets are duplicate
free, this may only hold if the record is contained in both input sets.
Cross Probucr (X). Let hy() be a hash-function defined on the key
kr of sch(T'). Let D > 0 be a constant. Then the cross product is
defined as

map(key k, value v) —

[(h7(k) mod D, k & v)] ifinputtk®v) =T,
{[(0, ke®v),.,(D-1,kev)] ifinputtkev)=S.
reduce(key ik, vset ivs) —
lcrossproduct(Tik,S) |

Ti = {iv | iv € ivs A input(iv) = T},

$ ={iv|iv € ivs Ainput(iv) = § |

Here map creates a disjoint partitioning on input 7" by assigning
each record from 7 a number in O, .., D — 1. The records from S are
replicated by outputting D intermediate records covering all inter-
mediate keys from 0, .., D — 1. The purpose of this partitioning is to



allow for D reduce function calls and thus a concurrent execution
on different nodes’. Inside a reduce call the input set ivs is split
into two subsets Tj; and S. On these sets we then compute the cross
product using the local function crossproduct.
JoN (>). Joins may be expressed as op,(T X §) resulting in two
MapReduce tasks where one is based on a cross product. Obviously
this does not scale for large input sets. We therefore show below a
more efficient variant.  (map(key «, value v) -

[(prj, (k@ v),kev)] ifinpuk®v) =T,
{[(pr Jp; (k@ ).k @V if inputk @ v) = 5.
T »pirsy S B reduce(key ik, vset ivs) —
[crossproduct(Tik, Si) |

Ti = {iv | iv € ivs A input(iv) = T},

Si = {iv] iv € ivs A input(iv) = S}]

This means that map re-partitions both inputs 7" and S into
co-partitions T and S ; where the join attributes inside a coparti-
tion have the same value. It then suffices to call crossproduct
for these copartitions. Note that this is similar to a standard
relational sort-merge join in the following way: it has to perform
a nested-loop, i.e. cross product, on the records having the same
value for their join attribute. Also note that for those cases where
the join attribute is skewed in a way that the input becomes too
large to fit into main memory, the call to crossproduct may
perform a block-based nested-loop join similar to DBMSs.

B.4 Extended Operators

We discuss an additional operator that does not effect the expres-
siveness of MapReduce but is useful in the following discussion.

Sorr.
map(key k, value v) —

[(Prjail ety KB V), prjsch(T}\(uil vty | (K@ V)]
reduce(key ik, vset ivs) — [{ik} X ivs]

SOTty; ..aj, (T) =

This mapping rule is somewhat surprising as neither map nor
reduce perform an actual sort operation. The correctness of this
mapping rule is guaranteed as the MapReduce and Hadoop frame-
works preserve interesting orders [10]. Finally, let us stress that all
other operators (e.g. division, and outer-joins) may be composed
by the above operators.

B.5 Relational DAGs

So far we have considered single operators and provided rules
to map them to MapReduce jobs. However, relational algebra ex-
pressions typically consist of multiple operators forming a Directed
Acyclic Graph (DAG). These DAGs may be mapped to a cascade
of MapReduce jobs by applying our rewrite rules recursively. Out-
puts of subplans are simply considered input files to the next oper-
ator. Thus each operator triggers a separate MapReduce job. For
instance, T »< (S » U) is computed by executing a MapReduce
job of §4 for S and U and then executing another MapReduce job
on the result and 7. Obviously these plans are far from optimal
and may be improved in several ways. An upcoming paper dis-
cusses how to compute multi-way joins [4]. However those joins
do not use co-partitioning as Trojan Join. As discussed above this
has severe performance penalties. Therefore it would be interesting
to extend our Trojan Join to multiway-joins. We will research this
idea as part of future work.

°Note that hy is orthogonal to the partitioning function sh (§2).
The former hashes records to reduce functions, the latter hashes
reduce functions to reduce tasks.

B.6 Mapping MapReduce to Relational Alge-
bra

The main idea of MapReduce is to perform an aggregation based

on two user-defined functions. The purpose of the first function
(map) is to define the items and grouping key, the purpose of the
second function (reduce) is to define the aggregation function and
the output format. One peculiarity here is that both functions may
return a sequence of records. To express this we require a special
operator that however is straightforward to integrate into an existing
relational algebra: a multimap operator.
MULTIMAP OPERATOR. mmapy(7) +— 7’. For each input item ¢ € T
this operator applies a function f(f) generating zero, one, or multi-
ple output items. All output items have the same schema sch(7”).
Function f takes as its argument the entire tuple ¢, however the at-
tributes of  may be passed as different arguments.

Using this operator we are able to define the backmapping rule
for any MapReduce job as follows:

MaprREeDUCE Given an input set 7 and two UDFs, map and reduce,
any MapReduce task can be expressed in relational algebra as:

1v[RmapA,reduce (T) = mmapreduce (Fik (mmapmap (T)))

This means, logically any MapReduce job can be expressed as a
multimap operator mmapn., followed by a grouping on the inter-
mediate key ik and a mmapy., using reduce. Notice that the main
difference of y and mmap,.q.ce 1S that the former creates exactly
one output value for an input group whereas the latter may create
0, 1, or multiple output values for an input group. Thus, in general
mmap,.quce May aggregate the input value set similarly to y, but it
does not have to.

(3,3) 3,4)

2,1 2,2) (le{Tte7
(1,6) mmapy,, (1,7) Ty (2,{2,1) mmaprequce (1@{7.3}@10)
(2,0) — 2,1 — (1,{7,3) — Geoded
3,1 3,2) (3,{2,4)) Be{2,406)

(1,2) (1,3)
Figure 9: MapReduce processing in relational algebra

Figure 9 shows an example for an input set 7 having six tuples,
sch(T') = (a1, ap) where ky = [a;] and vy = [a,]. The map function
increases all values by one, i.e. map := [k,v + 1]. The results are
then grouped (I',, ) and fed into reduce which creates all subsets of
value sets having a sum greater three, i.e. reduce := [ik & vset’ ®
sum(vset’) | vset’” C vset A sum(vset') > 3]. Each output value is
the concatenation of the intermediate key, the subset and its sum.
For instance, for tuple (2, {2, 1}) all subsets have a sum smaller or
equal three. Thus no output is produced. For (1, {7, 3}) two subsets
{7} and {7, 3} have a sum greater than three. Thus two output tuples
(18{7}®7) and (1&{7, 3}®10) are produced. Similarly for (3, {2,4})
two output tuples are produced.

C. SQL QUERIES AND MAPREDUCE
JOBS

C.1 Selection Task

SQL oquery. HadoopDB performs the selection task by executing
this SQL statement:

SELECT pageURL, pageRank FROM Rankings WHERE pageRank>10;
MarRepuce joss. Hadoop performs the same MapReduce job
as in [3]. In contrast to Hadoop, Hadoop++ uses a MapRe-
duce job composed of a single map function receiving only those
(key, value)-pairs whose pageRank is above 10. This is because
Hadoop++ makes use of the SplitTree index.
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Figure 8: Additional Task Results not related to Indexing and Join Processing

C.2 Join Task

SQL query. HadoopDB pushes the following SQL statement to the
local databases. It computes partial aggregates in the local DBMSs
and then requires a single reduce task for the final aggregation:

SELECT sourceIP, COUNT(pageRank),
SUM(pageRank), SUM(adRevenue)
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN
Date(’2000-01-15') AND Date(’2000-01-22")
GROUP BY UV.sourcelP;

MarRebuck joss. While Hadoop uses three MapReduce jobs as
explained in [16], Hadoop++ uses a single MapReduce job that
implements the co-partitioned join operator explained in §4. This
works as follows. First, the selection predicate on visitDate is ap-
plied and only matching UserVisits records are passed to the map
function. For Rankings, all records are passed to the map function.
The map function, in turn, performs the join operation and outputs
only those results that satisfy the join predicate. Notice that the
map function can perform the join operation locally because data in
input splits is composed of co-groups from Rankings and UserVis-
its. Then, a combine performs pre-aggregation before shuffling.
Finally, a single reduce task performs the final aggregation.

D. SYSTEM SETUP DETAILS

Hadoop. For our experiments, we realized the following changes
to the default configuration settings: (1) we stored data into
the Hadoop Distributed File Systems (HDFS) using 256MB data
blocks, (2) we allowed each task tracker to run with a maximum
heap size of 1024MB, (3) we increased the sort buffer to 200MB,
(4) Hadoop was allowed to reuse the task JVM executor instead
of restarting a new process per task, (5) we used 100 concurrent
threads for merging intermediate results, (6) we allowed a node to
concurrently run two map tasks and a single reduce task, and (7)
we set HDFS replication to 1 as done in [3].

Hadoop++ is an improved version of Hadoop that incorporates
support for index-scans and co-partitioning as discussed in §3
and §4. We use the same configuration settings as for Hadoop,
but we allow it to read data in binary format, except for one of
our benchmarks (UDF task). A binary record is composed of the
data itself and a header containing the lineage of the record and the
offset of each attribute.

HadoopDB is a hybrid system combining Hadoop, HBase, and sin-
gle instance DBMSs, e.g. Postgres, into a system somewhat similar
to a PDBMS. We use PostgreSQL 8.4 as local database and in-
crease the memory for shared buffers to 512 MB and the working
memory to 1 GB. As in [3], we do not use PostgreSQL’s data com-
pression feature, we set data replication to 1 as done in [3].

E. ADDITIONAL BENCHMARK RESULTS

Here we list results for the other tasks defined in the bechmark
of [16]. For the grep task, Hadoop++ executes exactly the same
code as Hadoop. Therefore runtimes are not effected (and not
shown). For the other tasks — even though they are neither related
to indexing nor join processing — we still see an improvement of
Hadoop++ over Hadoop. We discuss this briefly in the following.

E.1 Large and Small Aggregation Task

These tasks computes the total sum of adRevenue grouped by
sourcelP in UserVisits. Large Aggregation Task uses all characters
of sourcelP as grouping key; it computes 2.5 millions groups. In
contrast, Small Aggregation Task uses the first seven characters of
sourcelP as grouping key; it computes 2, 000 groups.

Figures 8(a) and 8(b) summarize the results for this task. We
observe that for both tasks (small and large and aggregation)
Hadoop++ outperforms Hadoop because it reads data in binary for-
mat and, hence, it can read sourcelP and adRevenue without read-
ing other attributes. Furthermore, we can observe that Hadoop++
is slower than HadoopDB, because Postgres applies a hash aggre-
gation while Hadoop++ uses a sort-based-aggregation. However,
the performance of Hadoop++ and HadoopDB is in the same ball-
park even though HadoopDB emulates a non-compressed PDBMS
and even though the improvements of Hadoop++ are not related to
aggregate computation.

E.2 UDF Aggregation Task

We also consider an aggregation query that parses each HTML
document in Documents, using a UDF!?, which extracts the inlinks
and counts the number of unique pages referencing a URL.

When loading HTML documents into HDFS for Hadoop and
Hadoop++, we proceed as in [3, 16], i.e. we concatenate several
documents into larger ones in order to avoid memory problems with
the HDFS’ server when dealing with a large number of documents.
In contrast, HadoopDB stores each HTML document separately in
relation Documents.

Figure 8(c) shows results for this task. We see the best variant
of Hadoop++ is at least as good or better than HadoopDB. This
is because Hadoop++ processes concatenated HTML documents
as described above. Compared to Hadoop, Hadoop++(256MB)
has similar performance. However, overall, neither HadoopDB nor
Hadoop++ can improve over the Hadoop for this particular task.

!'Not to be confused with the ten UDFs provided by Hadoop as
explained above.



