
Jorge-Arnulfo Quiané-Ruiz

computer science

saarland
university

Jens Dittrich

Efficient Big Data Processing
in Hadoop MapReduce

MapReduce
Intro

Job Optimization

Data Layouts

Indexing

MapReduce
Intro

Copyright of all slides: Jens Dittrich and
Jorge Quiané 2012

Big Data

[Physics]

http://cdsweb.cern.ch/record/1295244

http://www.flickr.com/photos/
14924974@N02/2992963984/

http://it.wikipedia.org/wiki/
File:KSC_radio_telescope.jpg

http://www.youtube.com/watch?
v=zwRTIUhKfQM

all roads of Germany, from MOVIES-
paper SSTD 2009

http://www.istockphoto.com/stock-
illustration-16136234-dna-strands.php

[Dean et al, OSDI’04]

MapReduce

Semantics:

map(key, value) -> set of (ikey, ivalue)

reduce(ikey, set of ivalue) -> (fkey, fvalue)

Google-Use Case:

Web-Index

map(key, value)
->

set of (ikey, ivalue)

map(docID, document)
->

set of (term, docID)

map(44,
 ´´This is text on a website!´´
)
->
{

 (``This´´, 44),

 (``is´´, 44),

 (``text´´, 44),

 (``on´´, 44),

 (``a´´, 44),

 (``website´´, 44)
}

map(42,
 ´´This is just another website!´´
)
->
{

 (``This´´, 42),

 (``is´´, 42),

 (``just´´, 42),

 (``another´´, 42),

 (``website´´, 42)
}

map(43,
 ´´One more boring website!´´
)
->
{

 (``One´´, 43),

 (``more´´, 43),

 (``boring´´, 43),

 (``website´´, 43)
}

reduce(ikey, set of ivalue)
->

(fkey, fvalue)

reduce(term, set of docID)
->

(term, (posting list of docID, count))

reduce(``This´´,
	 {42,
	 43}
)
->
(``This´´, ([42, 43], 2))

reduce(``is´´,
	 {42,
	 43}
)
->
(``is´´, ([42, 43], 2))

reduce(``boring´´,
	 {43}
)
->
(``boring´´, ([43], 1))

etc.

Other Applications:

Search
rec.a==42 or:
rec.contains(``bla´´) or:
rec.contains(0011001)

Search
rec.a==42 or:
rec.contains(``bla´´) or:
rec.contains(0011001)

Machine Learning
k-means, mahout library

Search
rec.a==42 or:
rec.contains(``bla´´) or:
rec.contains(0011001)

Machine Learning
k-means, mahout library

Web-Analysis
Sum of all accesses to page
Y from user X

Search
rec.a==42 or:
rec.contains(``bla´´) or:
rec.contains(0011001)

Machine Learning
k-means, mahout library

Web-Analysis
Sum of all accesses to page
Y from user X

etc.

Big Data ?

map() and reduce() with

HDFS

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

http://www.istockphoto.com/
file_closeup.php?id=591134

http://www.istockphoto.com/
file_closeup.php?id=591134

HDFS

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

...

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

horizontal partitions

http://www.istockphoto.com/
file_closeup.php?id=591134

http://www.istockphoto.com/
file_closeup.php?id=591134

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

HDFS blocks
64MB (default)horizontal partitions

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

1

4

7

2 3

5 6

8 9

11 22 33

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4

7

2

3

5 6

8 9

11 22

3

3

44 55 66

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4

7

2

3 56

8 9

11 22

3

3

4 455 6 6

77 88 99

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Failover

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Failover

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

I would like to
have block 4!

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

I would like to
have block 4!

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Load
Balancing

I would like to
have block 4!

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

MapReduce

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

HDFS

MapReduce

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Map Phase

HDFS

MapReduce map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
1

4 7

2

3 56

89 11 22

3

3

4 455 6 6

77

8

89

9

Map Phase

HDFS

MapReduce

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

...
1

4 7

2

3 5

891 22

34 55 6 6

77

8

89

9

Map Phase

6

HDFS

MapReduce

1 3

4

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

...
1

4

2

3 5

81

34 55 6 6

77 89

9

Map Phase

9 1 23

76 8

9 1 23

76 8

2

HDFS

MapReduce

4

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob

...
1

4

2

3 5

81

34 55 6 6

77 89

9

Map Phase

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

2

HDFS

MapReduce

4

M1 M2 M3 M4 M5 M6 M7

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
12

45

81 2

34 455 6 6

77 89

9

Map Phase

453

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

HDFS

MapReduce

M8 M9

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
12

45

81 2

34 455 6 6

77 89

9

Map Phase

5‘ 4‘

3

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

HDFS

MapReduce

M8 M9

map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...
12

45

81 2

34 455 6 6

77 89

9

Map Phase

5‘ 4‘

3

6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

9 1 23

76 8

HDFS

MapReduce map(docID, document) -> set of (term, docID)

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

network

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

5‘ 4‘6‘ 9‘ 8‘ 1‘ 3‘ 2‘ 7‘

network

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

networknetwork

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

networknetwork

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Shuffle Phase

A-B C-D E-F G-H I-J K-L W-Z

network

HDFS

MapReduce group by term

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-ZA-B C-D E-F G-H I-J K-L W-Z

HDFS

MapReduce

reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

R1 R2 R3 R4 R5 R6 Rn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-ZA-B C-D E-F G-H I-J K-L W-Z

HDFS

MapReduce reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

R1 R2 R3 R4 R5 R6 Rn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-Z

A-B‘ C-D‘ E-F‘ G-H‘ I-J‘ K-L‘ W-Z‘

HDFS

MapReduce reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

R1 R2 R3 R4 R5 R6 Rn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DNn

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN6

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN5

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN4

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN3

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN2

HDFS

DN4 DN5 DN6 DN7 DNnDN2

...
BA

block42 block42

Bob's Perspective

Bob
DN1

...

Reduce Phase

A-B C-D E-F G-H I-J K-L W-Z

A-B‘ C-D‘ E-F‘ G-H‘ I-J‘ K-L‘ W-Z‘

HDFS

MapReduce reduce(term, set of docID) -> set of
(term, (posting list of docID, count))

Hadoop
MapReduce
Advantages

Failover

Failover

Scalability

Failover

Scalability

schema-later

Hadoop
MapReduce
Disadvantages

Performance

61

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

Execution Pipeline details: see Hadoop++-paper

MapReduce
Intro

Job Optimization

Data Layouts

Indexing

Job Optimization

64

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

Spill Process

64

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

Spill Process

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.mb = 100
(by default)

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)

io.sort.mb = 100
(by default)

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default)

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default) io.sort.record.percent

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default) = 0.05 (by default)io.sort.record.percent

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default)
 Optimal is:
= 16 / (16 + recordSize)

= 0.05 (by default)io.sort.record.percent

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default)
 Optimal is:
= 16 / (16 + recordSize)

= 0.05 (by default)io.sort.record.percent
 Optimal:
= BlockSize + 16*#recordsPerBlock

65

Spill Process Overview

M1

MapOutputBuffer

spill 1

spill 2

spill 3

spill 4

Map-side Merge Map Output

Data is sorted
and partitioned

io.sort.spill.percent = 0.8 (by default)MapOutputBuffer

Metadata Raw Data

io.sort.mb = 100 (by default)
 Optimal is:
= 16 / (16 + recordSize)

= 0.05 (by default)

 Better:
= 1.0

io.sort.record.percent
 Optimal:
= BlockSize + 16*#recordsPerBlock

But... there are
many more parameters!

66

67

67

Still
many more...

68

Tuning Job Parameters
Starfish

Overall Goal: find out the right parameter settings
 for arbitrary MapReduce jobs.

[H. Herodotou and S. Babu: Profiling, What-If, and Cost-based Optimization of MapReduce
Programs. PVLDB 2011.]

68

Tuning Job Parameters
Starfish

Overall Goal: find out the right parameter settings
 for arbitrary MapReduce jobs.

[H. Herodotou and S. Babu: Profiling, What-If, and Cost-based Optimization of MapReduce
Programs. PVLDB 2011.]

Contribution: Cost-based optimiser based on a
 what-if engine.

68

Tuning Job Parameters
Starfish

Overall Goal: find out the right parameter settings
 for arbitrary MapReduce jobs.

MapReduce Job

MapReduce
Framework Profiler

What-If Engine

Cost-based Optimiser
Sample data &

cluster resources

Input data & cluster
resources

dynamic instrumentation

timings and
resource usage

job profile

get estimation complete description of job execution

job configuration

[H. Herodotou and S. Babu: Profiling, What-If, and Cost-based Optimization of MapReduce
Programs. PVLDB 2011.]

Contribution: Cost-based optimiser based on a
 what-if engine.

69

Automatic Job Optimization

[E. Jahani et al.: Automatic Optimization for MapReduce Programs. PVLDB 2011.]

Manimal
Overall Goal: optimise MapReduce jobs by statically
 analysing their map functions.

69

Automatic Job Optimization

[E. Jahani et al.: Automatic Optimization for MapReduce Programs. PVLDB 2011.]

Manimal
Overall Goal: optimise MapReduce jobs by statically
 analysing their map functions.
Contribution: static code analysis of MapReduce jobs.

69

Automatic Job Optimization

[E. Jahani et al.: Automatic Optimization for MapReduce Programs. PVLDB 2011.]

Manimal
Overall Goal: optimise MapReduce jobs by statically
 analysing their map functions.

varload 'value'
invokevirtual
...
ifeq ...

Compiled MapReduce code
plus user's parameters

select src.../logs/.log.1.idx/logs/log.1
select src.../logs/.log.2.idx/logs/log.2
.........

Manimal catalog

Analyzer Optimizer Execution
Fabric

topurls 230708

MapReduce program
output file(s)

void map(key, value) {
 emit(value.rank(), value)
}

Index-generation program
for later use.

Optimization Descriptors

(SELECT, V.rank(),
 V.rank() > 1)

Execution Descriptor

(SELECT, log1.idx,
 V.rank() > 1)

Manimal actions
User actions

Figure 1: Architecture of the Manimal system.

disk binary association table [8]). The goal of Manimal is to
automatically detect and exploit as many of these standard
optimization opportunities as possible.

Of course, relational-style optimizations are tightly linked
to the semantics of the program itself. RDBMSes use query
languages and metadata that make such semantics explicit,
but MapReduce systems do not. Moreover, programmers
likely chose to write a MapReduce program at least par-
tially because such metadata is not required. Thus, a cen-
tral challenge for Manimal is to understand users’ programs
well enough so that the optimizations can be applied wholly
automatically, thereby obtaining good performance and pre-
serving MapReduce’s appealing programming model.

This paper describes a static analysis-style mechanism for
detecting optimizable code in already-compiled MapReduce
programs. Like most programming-language optimizers, it
is a best-e↵ort system: Manimal does not guarantee that
it will find every possible optimization, and a determined
programmer can elude the detector. Of course, missing
an optimization is regrettable, but finding a false one is
catastrophic; Manimal should only indicate an optimiza-
tion when it is entirely safe to do so. The Manimal analyzer
is designed to sacrifice potential optimizations when there
is a chance of non-safety; however, we show experimentally
that it can find most of the optimizations discovered by a
human annotator in a collection of MapReduce programs.

Note that this static analysis approach is most appropri-
ate for MapReduce programs that are “program-specific,”
with code that is directly related to the user’s end-goals for
the program. For tools layered on top of MapReduce, such
as the Pig query system [22], we believe a better approach
is for the tools to give Manimal explicit hints about pro-
gram semantics. We discuss this issue in more depth in
Appendix A.

Background There has been a recent surge of interest in
MapReduce systems. Some projects have applied
MapReduce-inspired techniques to building a traditional re-
lational database [2, 27], but most have focused on improv-
ing MapReduce execution performance [3, 9, 13, 28, 29].
However, most of these projects are either low-level system
techniques that are semantics-free, or ask the user to modify
their code to expose more program semantics. To the best of
our knowledge, Manimal is the first MapReduce system to
use data semantics-driven optimizations without requiring
any code changes from developers.

We previously presented an outline of the Manimal ar-
chitecture and a single experimental result [10]. This paper
substantially expands on that earlier work, with new opti-
mization techniques, a much more detailed technical discus-
sion, more complete discussions of MapReduce workloads,
and full experimental results.

Contributions and Outline The main contributions of
this work include:

• A framework for optimizing wholly-unmodified MapRe-
duce programs, targeting data-centric programming
idioms (in Section 2)

• Algorithms for detecting and exploiting three opti-
mization types: selection, projection, and data com-
pression (Section 3).

• An implemented Manimal system that yields substan-
tial performance gains (up to more than 11x) on the
previously-published benchmark programs from Pavlo,
et al. (Section 4).

Finally, we conclude with a discussion of related work in
Section 5. We also discuss MapReduce-related tools in Ap-
pendix A and summarize the state of MapReduce bench-
mark workloads in Appendix B. We present additional in-
formation on program analysis and experimental results in
Appendices C and D. We discuss ideas for future work in
Appendix E.

2. SYSTEM OVERVIEW
Manimal comprises three main components that allow

it to optimize a user’s MapReduce program wholly auto-
matically. Figure 1 shows the flow of information through
the system. The analyzer examines a user’s submitted
MapReduce program and sends the resulting optimization
descriptor to the optimizer. The optimizer uses this de-
scriptor, plus a catalog of precomputed indexes, to choose
an optimized execution plan, called an execution descrip-
tor. This descriptor, plus a potentially-modified copy of the
user’s original program, is then sent to the execution fab-
ric for full execution on the cluster. The execution fabric
retains the standard map-shu✏e-reduce sequence and is al-
most identical to standard MapReduce (in the case of our
prototype, Apache Hadoop).

386

Analyser Optimiser Executor

Contribution: static code analysis of MapReduce jobs.

70

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

70

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u⇥
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Data
Load
Phase

Map
Phase

Shuffle
Phase

Reduce
Phase

Main focus of this
tutorial!

MapReduce
Intro

Job Optimization

Data Layouts

Indexing

Data Layouts

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

UserVisits Log

DN i

HDFS

DN n

.
DN 1

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

upload

Default Layout

733

DN i

HDFS

DN n

.
DN 1

...

MapReduce

TT 1 TT i TT n

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

DN i

HDFS

DN n

.
DN 1

...

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

...

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

...

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

...

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

...

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Problem

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

744

M1 Mi Mn

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Column Layout

[D. Batory: On Searching Transposed Files. ACM TODS 1979]
[G. Copeland, S. Khoshafian: A Decomposition Storage Model. SIGMOD 1985]

76

(v) System load. The system load (disk utilization and CPU uti-
lization) can significantly affect a single query’s response time.
Obviously, a disk-bound query will see a big increase in the
response time if it is competing with other disk-bound queries.
Competing disk and CPU traffic may again have different effects
in column stores than in row stores.

We base all experiments on a variant of the following query:

select A1, A2 … from TABLE
where predicate (A1) yields variable selectivity

Since the number of selected attributes per query is the most
important factor, we vary that number on the X-axis through all
experiments. Table 1 summarizes the parameters considered, what
the expected effect is in terms of time spent on disk, memory bus
and CPU, and which section discusses their effect.

4.1 Baseline experiment
select L1, L2 … from LINEITEM
where predicate (L1) yields 10% selectivity

As a reminder, the width of a LINEITEM tuple is 150 bytes, it
contains 16 attributes, and the entire relation takes 9.5GB of
space. Figure 6 shows the elapsed time for the above query for
both row and column data. The graph on the left of the figure

shows the total time (solid lines), and the CPU time separately
(dashed lines) as we vary the number of selected attributes on the
x-axis. Both systems are I/O-bound in our default configuration
(1 CPU, 3 disks, no competition), and therefore the total time
reflects the time it takes to retrieve data from disk. Both systems
are designed to overlap I/O with computation (as discussed in
Section 2). As expected, the row store is insensitive to projectiv-
ity (since it reads all data anyway), and therefore its curve
remains flat. The column store, however, performs better most of
the time, as it reads less data. Note that the x-axis is spaced by
the width of the selected attributes (e.g., when selecting 8
attributes, the column store is reading 26 bytes per LINEITEM
row, whereas for 9 attributes, it reads 51 bytes — see Figure 5 for
detailed schema information).

The “crossover” point that the column store starts performing
worse than the row store is when selecting more than 85% of a
tuple’s size. The reason it performs worse in that region is that it
makes poorer utilization of the disk. A row store, for a single
scan, enjoys a full sequential bandwidth. Column stores need to
seek between columns. The more columns they select, the more
time they spend seeking (in addition to the time they spend read-
ing the columns). Our prefetch buffer (48 I/O units) amortizes
some of the seek cost. A smaller prefetch buffer would lower the
performance of the column store in this configuration, but addi-
tional disk activity from other processes would make the cross-
over point to move all the way to the right. We show these two
scenarios later, in Section 4.5.

While this specific configuration is I/O-bound, it still makes
sense to analyze CPU time (dashed lines in left graph of Figure
6), as it can affect performance in CPU-bound configurations, or
when the relations are cached in main memory. The left graph of
Figure 6 shows the total CPU time for both systems. We provide
a time breakdown of CPU costs in the graph on the right part of
Figure 6. The first two bars correspond to the row store, selecting
1 and 16 attributes (the two ends in our experiment). The rest of
the bars belong to the column store, selecting from 1 to 16
attributes. The height of each stacked bar is the total CPU time in
seconds. The bottom area (dark color), is the time (in sec) spent
in system mode. This is CPU time spent while Linux was execut-
ing I/O requests and we do not provide any further break-down of
that. For the row store, the system time is the same regardless of
the number of selected attributes. For the column store it keeps

Table 1: Expected performance trends in terms of elapsed
disk, memory transfer, and CPU time (arrows facing up mean
increased time), along with related experimentation sections.

parameter Disk Mem CPU section
selecting more attributes

(column store only) 4.1

decreased selectivity 4.2
narrower tuples 4.3

compression 4.4
larger prefetch 4.5

more disk traffic 4.5
more CPUs /
more Disks 5

0

2

4

6

8

10

12 usr-rest (top)
usr-L1
usr-L2
usr-uop
sys

0

10

20

30

40

50

60

4 20 36 52 68 84 100 116 132 148

Row
Column
Row CPU
Column CPU

Selected bytes per tuple

E
la

ps
ed

 ti
m

e
(s

ec
)

E
la

ps
ed

 ti
m

e
(s

ec
)

Figure 6. Baseline experiment (10% selectivity, LINEITEM). Left: Total elapsed time (solid lines) and CPU time (dashed lines) for
column and row store. The total elapsed time is equal to I/O time since CPU time is overlapped. X-axis is spaced by the width of

selected attributes. Right: CPU time breakdowns. The first two bars are for row store, the rest are for column store.

of attributes selected
column storerow store

(see Fig. 5 for the type
of each attribute)

[Harizopoulos et al.: Performance Tradeoffs in Read-Optimized Databases. VLDB 2006]

SELECT a1, a2, ... FROM Lineitem
WHERE predicate (a1) yields 10% selectivity

Column vs Row Layout

77

Column Layout in
MapReduce?

78

Column-wise File
(CFile)

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing
in the MapReduce Framework. SIGMOD 2011.]

79

DN i

HDFS

DN n

.
DN 1

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

UserVisits Log

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

Vertical Group 1 (basic group)

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

Vertical Group 1 (basic group)

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

101.132.121.13
120.115.124.31
125.102.135.45

Vertical Group 1 (basic group)

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

cnn.com
vldb.org
espn.com

crisis
database
football

101.132.121.13
120.115.124.31
125.102.135.45

365.98
296.02
123.35

2011/12/02
2011/12/03
2011/12/01

Vertical Group 1 (basic group)

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

cnn.com
vldb.org
espn.com

crisis
database
football

101.132.121.13
120.115.124.31
125.102.135.45

365.98
296.02
123.35

2011/12/02
2011/12/03
2011/12/01

Vertical Group 1 (basic group)

101.132.121.13
120.115.124.31
125.102.135.45

2011/12/02
2011/12/03
2011/12/01

365.98
296.02
123.35

crisis
database
football

CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

cnn.com
vldb.org
espn.com

crisis
database
football

101.132.121.13
120.115.124.31
125.102.135.45

365.98
296.02
123.35

2011/12/02
2011/12/03
2011/12/01

Vertical Group 1 (basic group)

101.132.121.13
120.115.124.31
125.102.135.45

2011/12/02
2011/12/03
2011/12/01

365.98
296.02
123.35

crisis
database
football

CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

upload

DN i

HDFS

DN n

.
DN 1

UserVisits Log

125.102.135.45
101.132.121.13
120.115.124.34

espn.com
cnn.com
vldb.org

2011/12/01
2011/12/02
2011/12/03

123.35
365.98
296.02

football
crisis
database

cnn.com
vldb.org
espn.com

crisis
database
football

101.132.121.13
120.115.124.31
125.102.135.45

365.98
296.02
123.35

2011/12/02
2011/12/03
2011/12/01

Vertical Group 1 (basic group)

101.132.121.13
120.115.124.31
125.102.135.45

2011/12/02
2011/12/03
2011/12/01

365.98
296.02
123.35

crisis
database
football

CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 80

upload
HDFS block 1 replica 1

from all CFiles

File Header
Row Group 1
Row Group 2

...
Row Group n
Row Group

Offsets
Indexed Value

(Optional)
File Summary

CFile Format

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 81

File Header
Row Group 1
Row Group 2

...
Row Group n
Row Group

Offsets
Indexed Value

(Optional)
File Summary

Version
Column Type

Compression Scheme
#Values per Row Group

CFile Format

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 81

File Header
Row Group 1
Row Group 2

...
Row Group n
Row Group

Offsets
Indexed Value

(Optional)
File Summary

Version
Column Type

Compression Scheme
#Values per Row Group

CFile Format

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 81

Row Groups are compressed

Compress picture: http://
openclipart.org/detail/68671/compress-
by-buggi

Compress picture: http://
openclipart.org/detail/68671/compress-
by-buggi

Compress picture: http://
openclipart.org/detail/68671/compress-
by-buggi

File Header
Row Group 1
Row Group 2

...
Row Group n
Row Group

Offsets
Indexed Value

(Optional)
File Summary

Version
Column Type

Compression Scheme
#Values per Row Group

#Total Records
#Row Groups

Offset of
Row Group Offsets

Offset of Indexed Value

CFile Format

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 81

Row Groups are compressed

Column Type: float (4 bytes)
#Total Values = 130,000
Row Group = 1,000 values
HDFS Block Size = 64MB

HDFS Blocks for CFile-adRevenue

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 82

Column Type: float (4 bytes)
#Total Values = 130,000
Row Group = 1,000 values
HDFS Block Size = 64MB

Row Group 1

Row Group 2

...
Row Group 66

HDFS Block 1

File Header

HDFS Blocks for CFile-adRevenue

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 82

Compress picture: http://
openclipart.org/detail/68671/compress-
by-buggi

Column Type: float (4 bytes)
#Total Values = 130,000
Row Group = 1,000 values
HDFS Block Size = 64MB

Row Group 1

Row Group 2

...
Row Group 66

HDFS Block 1

File Header

HDFS Block 2

Row Group 66

...
Row Group 130

Row Group Offsets

File Summary

HDFS Blocks for CFile-adRevenue

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 82

DN i

HDFS

DN n

.
DN 1

MapReduce

TT 1 TT i TT n

.

HDFS block 1 replica 1
from all CFiles

Job Execution CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 83

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

HDFS block 1 replica 1
from all CFiles

Job Execution CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 83

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Input Split = ({CFile-sourceIP, 0, 1000},
 {CFile-pageURL, 0, 1000})

HDFS block 1 replica 1
from all CFiles

Job Execution CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 83

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Input Split = ({CFile-sourceIP, 0, 1000},
 {CFile-pageURL, 0, 1000})

HDFS block 1 replica 1
from all CFiles

Job Execution CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 83

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Input Split = ({CFile-sourceIP, 0, 1000},
 {CFile-pageURL, 0, 1000})

HDFS block 1 replica 1
from all CFiles

Job Execution CFile-sourceIp
CFile-pageURL
CFile-visitDate

CFile-adRevenue
CFile-searchWord

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce
Framework. SIGMOD 2011.] 83

M1 Mi Mn

SELECT a1, a2, ...
FROM table30Atts

Column Layout in MapReduce

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 84

We vary the number of attributesSELECT a1, a2, ...
FROM table30Atts

Column Layout in MapReduce

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 84

We vary the number of attributesSELECT a1, a2, ...
FROM table30Atts

Column Layout in MapReduce

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 84

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

PAX

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001]
86

UserVisits Log
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

...
102.192.235.245, voici.com, 2011/12/19, 630.30, queen
145.111.145.1, sports.com, 2011/12/20, 365.98, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

...

Recap

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001] 87

UserVisits Log
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

...

Row Group 1

Row Group n

Recap

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001] 87

UserVisits Log
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

...

Row Group 1

Row Group n

Size of a Row Group = Disk Block Size
(but can be any arbitrary size)

Recap

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001] 87

UserVisits Log
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

...

Row Group 1

Row Group n

Size of a Row Group = Disk Block Size
(but can be any arbitrary size)

Recap

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001] 87

PAX in MapReduce?

88

Storage in Cheetah

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce.
PVLDB 2010]

89

DN i

HDFS

DN n

.
DN 1

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

UserVisits Log

...

Row Group 1

Row Group n

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

Data Upload

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 90

DN i

HDFS

DN n

.
DN 1

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

UserVisits Log

...

Row Group 1

Row Group n

upload

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

Data Upload

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 90

DN i

HDFS

DN n

.
DN 1

102.192.235.245, voici.com, 2011/12/19, 955.83, people
145.111.145.1, sports.com, 2011/12/20, 630.30, basket
123.95.100.24, abc.com, 2011/12/21, 26.02, politics

UserVisits Log

...

Row Group 1

Row Group n

upload

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

Data Upload

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 90

Average Record Size: 100 bytes
#Total Records = 1,000,000
Row Group Size = 200,000 records
HDFS Block Size = 64MB

HDFS Block Format

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

Row Group 1

Row Group 2

Row Group 3
Row Group 4

HDFS Block 1

Average Record Size: 100 bytes
#Total Records = 1,000,000
Row Group Size = 200,000 records
HDFS Block Size = 64MB

HDFS Block Format

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

Row Group 1

Row Group 2

Row Group 3
Row Group 4

HDFS Block 1
Version
Rows
Pointers
sourceIp

...
searchWord

Average Record Size: 100 bytes
#Total Records = 1,000,000
Row Group Size = 200,000 records
HDFS Block Size = 64MB

HDFS Block Format

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

Row Group 1

Row Group 2

Row Group 3
Row Group 4

HDFS Block 1
Version
Rows
Pointers
sourceIp

...
searchWord

Average Record Size: 100 bytes
#Total Records = 1,000,000
Row Group Size = 200,000 records
HDFS Block Size = 64MB

+ Columns in Row Groups are compressed

HDFS Block Format

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

Row Group 1

Row Group 2

Row Group 3
Row Group 4

HDFS Block 1
Version
Rows
Pointers
sourceIp

...
searchWord

Average Record Size: 100 bytes
#Total Records = 1,000,000
Row Group Size = 200,000 records
HDFS Block Size = 64MB

+ Columns in Row Groups are compressed
+ Further compression at the HDFS block level

HDFS Block Format

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

MapReduce

TT 1 TT i TT n

.

Job Execution

92

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Job Execution

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Job Execution

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

(1) read and decompress HDFS Block

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

(2) for each Row Group
(1) read and decompress HDFS Block

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

(2) for each Row Group
(3) decompress sourceIP and pageURL

(1) read and decompress HDFS Block

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

92

M1 Mi Mn

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS Block

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

92

M1 Mi Mn

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Row Columnar File
(RCFile)

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in
MapReduce in MapReduce-based Warehouse Systems. ICDE 2011]

94

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

read

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS Block

Job Execution

Row Group 1

Row Group 2

Row Group 3
Row Group 4

95

M1 Mi Mn

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

Sync Marker
Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

Sync Marker
Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

(1) for each Row Group
(2) read sourceIP and pageURLSync Marker

Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

(1) for each Row Group
(2) read sourceIP and pageURL
(3) decompress sourceIP

Sync Marker
Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

(1) for each Row Group
(2) read sourceIP and pageURL
(3) decompress sourceIP
(4) for each sourceIP value
(5) if sourceIP == 120.115.124.34

Sync Marker
Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in
MapReduce-based Warehouse Systems. ICDE 2011]

(2) for each Row Group
(3) decompress sourceIP and pageURL
(4) reconstruct tuple and feed to map()

(1) read and decompress HDFS BlockRow Group 1

Row Group 2

Row Group 3
Row Group 4

Reading HDFS
Blocks with Cheetah

RecordReader

Reading HDFS
Blocks with RCFile

(1) for each Row Group
(2) read sourceIP and pageURL
(3) decompress sourceIP
(4) for each sourceIP value
(5) if sourceIP == 120.115.124.34
(6) decompress pageURL
(7) reconstruct tuple and feed to map()

Sync Marker
Metadata
sourceIp
pageURL

...
searchWord

RCFile Format

96

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Column Input Format
(CIF)

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce.
PVLDB 2011]

98

Remarks on Cheetah-Storage and RCFile

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 99

Remarks on Cheetah-Storage and RCFile

(1) I/O elimination becomes difficult

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 99

Remarks on Cheetah-Storage and RCFile

(1) I/O elimination becomes difficult
(2) Tuning the row-group size becomes critical

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 99

Remarks on Cheetah-Storage and RCFile

(1) I/O elimination becomes difficult
(2) Tuning the row-group size becomes critical
(3) Overhead for per-Row Group metadata

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 99

Remarks on Cheetah-Storage and RCFile

(1) I/O elimination becomes difficult
(2) Tuning the row-group size becomes critical
(3) Overhead for per-Row Group metadata

CIF Approach:

CFile + Cheetah Storage (or RCFile)

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 99

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

UserVisits Log

DN i

HDFS

DN n

.
DN 1

Data Upload --- Upload UserVisits ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 100

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

UserVisits Log

DN i

HDFS

DN n

.
DN 1

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

upload

Dataset uploaded at
hdfs://MyData/UserVisits/

Data Upload --- Upload UserVisits ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 100

DN i

HDFS

DN n

.
DN 1

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database...

Dataset uploaded at
hdfs://MyData/UserVisits/

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

...

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

...

Row Group
“split0”

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

Row Group
“split0”

Data Upload --- Run Parallel Loader ---

125.102.135.45
101.132.121.13
120.115.124.34
...

espn.com
cnn.com
vldb.org
...

2011/12/01
2011/12/02
2011/12/03
...

123.35
365.98
296.02
...

football
crisis
database
...

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

Row Group

125.102.135.45
101.132.121.13
120.115.124.34
...

espn.com
cnn.com
vldb.org
...

2011/12/01
2011/12/02
2011/12/03
...

123.35
365.98
296.02
...

football
crisis
database
...

“split0”

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

Row Group

125.102.135.45
101.132.121.13
120.115.124.34
...

espn.com
cnn.com
vldb.org
...

2011/12/01
2011/12/02
2011/12/03
...

123.35
365.98
296.02
...

football
crisis
database
...

hdfs://MyData/UserVisits/split0/sourceIP
hdfs://.../pageURL
hdfs://.../visitDate
hdfs://.../adRevenue
hdfs://.../searchWord

“split0”

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

Dataset uploaded at
hdfs://MyData/UserVisits/

Row Group

125.102.135.45
101.132.121.13
120.115.124.34
...

espn.com
cnn.com
vldb.org
...

2011/12/01
2011/12/02
2011/12/03
...

123.35
365.98
296.02
...

football
crisis
database
...

hdfs://MyData/UserVisits/split0/sourceIP
hdfs://.../pageURL
hdfs://.../visitDate
hdfs://.../adRevenue
hdfs://.../searchWord

“split0”

hdfs://.../MetadataFile

Data Upload --- Run Parallel Loader ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 101

DN i

HDFS

DN n

.
DN 1

MapReduce

TT 1 TT i TT n

.

Row Group split0

Job Execution sourceIp
pageURL
visitDate

adRevenue
searchWord

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 102

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

Row Group split0

Job Execution sourceIp
pageURL
visitDate

adRevenue
searchWord

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 102

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

ColumnInputFormat.setColumns(
 job, “sourceIP, pageURL”);

Row Group split0

Job Execution sourceIp
pageURL
visitDate

adRevenue
searchWord

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 102

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

ColumnInputFormat.setColumns(
 job, “sourceIP, pageURL”);

Row Group split0

Job Execution sourceIp
pageURL
visitDate

adRevenue
searchWord

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 102

M1 Mi Mn

DN i

HDFS

DN n

.
DN 1

run jobMapReduce

TT 1 TT i TT n

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(sourceIP, pageURL)
}

.

ColumnInputFormat.setColumns(
 job, “sourceIP, pageURL”);

Row Group split0

Job Execution sourceIp
pageURL
visitDate

adRevenue
searchWord

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011] 102

M1 Mi Mn

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout

SELECT a1, a2, ...
FROM table30Atts

PAX Layout in MapReduce

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 103

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout PAX Layout

SELECT a1, a2, ...
FROM table30Atts

PAX Layout in MapReduce

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 104

SELECT a1, a2, ...
FROM table30Atts

Far from Optimal Layout

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout PAX Layout Optimal Layout

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 105

SELECT a1, a2, ...
FROM table30Atts

Far from Optimal Layout

0

1

2

3

4

5

5 10 15 20 25 30

D
at

a A
cc

es
s C

os
t [

s]

Number of Referenced Attributes (out of 30)

Row Layout Column Layout PAX Layout Optimal Layout

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011] 105

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Trojan Data Layouts

[A. Jindal, J. Quiané, J. Dittrich: Trojan Data Layouts: Right Shoes for a
Running Elephant. SoCC 2011]

107

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

layout 1

Job 1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (“vldb.org”.equals(pageURL))
 output(pageURL, sourceIP + visitDate)
}

2Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

layout 1

Job 1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (“vldb.org”.equals(pageURL))
 output(pageURL, sourceIP + visitDate)
}

2Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

layout 1

Job 1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (“vldb.org”.equals(pageURL))
 output(pageURL, sourceIP + visitDate)
}

2Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

layout 1

125.102.135.45, espn.com, 2011/12/01
101.132.121.13, cnn.com, 2011/12/02
120.115.124.34, vldb.org, 2011/12/03

..

.
layout 2

Job 2Job 1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

DN i

HDFS

DN n

.
DN 1

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

125.102.135.45
101.132.121.13
120.115.124.34
..
.

espn.com
cnn.com
vldb.org
..
.

2011/12/01
2011/12/02
2011/12/03
..
.

123.35
365.98
296.02
..
.

football
crisis
database
..
.

Job
map (offset, tuple) {
 if (“vldb.org”.equals(pageURL))
 output(pageURL, sourceIP + visitDate)
}

2Job
map (offset, tuple) {
 if (sourceIP == 105.102.135.45)
 output(sourceIP, pageURL)
}

1

layout 1

125.102.135.45, espn.com, 2011/12/01
101.132.121.13, cnn.com, 2011/12/02
120.115.124.34, vldb.org, 2011/12/03

..

.

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.
layout 3layout 2

Job 2Job 1

Idea

108
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Single HDFS
Block Replica

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Single HDFS
Block Replica Columns

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Single HDFS
Block Replica

Column groups

Columns

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Single HDFS
Block Replica

Column groups

Interesting
Column groups

Columns

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Single HDFS
Block Replica

Column groups

Interesting
Column groups

Columns

Filter

Novel Column Group
Interestingness

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Single HDFS
Block Replica

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Novel Column Group
Interestingness

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Single HDFS
Block Replica

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Novel Column Group
Interestingness

Column Group Packing
as 0-1 Knapsack

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Single HDFS
Block Replica

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Novel Column Group
Interestingness

Column Group Packing
as 0-1 Knapsack

§see our paper for details: [Trojan Data Layouts, SoCC’11]

109
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Multiple HDFS
Block Replica

110
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Multiple HDFS
Block Replica

110
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Columns picture: http://
www.istockphoto.com/stock-
photo-10676885-pile-of-words.php
Filter picture: http://
www.istockphoto.com/stock-
photo-8235648-kitchen-funnel.php
Packing picture: http://
www.istockphoto.com/stock-
photo-1373749-c-clamp.php

Queries picture: http://
www.istockphoto.com/stock-
photo-14278066-colorful-balls-with-
question-marks.php

Queries picture: http://
www.istockphoto.com/stock-
photo-14278066-colorful-balls-with-
question-marks.php

Pack

Filter

Multiple HDFS
Block Replica

110
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

110
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8

111
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Queries picture: http://
www.istockphoto.com/stock-
photo-14278066-colorful-balls-with-
question-marks.php

Queries picture: http://
www.istockphoto.com/stock-
photo-14278066-colorful-balls-with-
question-marks.php

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8

111
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8

111
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8

Name, Address, Phone,
AcctBal, Mktsegment,

Comment

Custkey, Nationkey

Custkey, Name, Address,
Nationkey, Phone,
AcctBal, Comment

Mktsegment

Phone, AcctBal

Address, Nationkey, Comment

Mktsegment

Custkey

Name

111
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Filter

Pack

Pack

Filter

Multiple HDFS
Block Replica

Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8

Name, Address, Phone,
AcctBal, Mktsegment,

Comment

Custkey, Nationkey

Custkey, Name, Address,
Nationkey, Phone,
AcctBal, Comment

Mktsegment

Phone, AcctBal

Address, Nationkey, Comment

Mktsegment

Custkey

Name

111
[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.

SoCC 2011]

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SDSS Queries

(d) SDSS PhotoObj

Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ⇠37 times less
redundant attributes than Hadoop-Row and to perform ⇠7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-o↵ between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

TPC-H Lineitem

Trojan Data Layouts Results

112[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011]

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SDSS Queries

(d) SDSS PhotoObj

Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ⇠37 times less
redundant attributes than Hadoop-Row and to perform ⇠7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-o↵ between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

TPC-H Lineitem

Trojan Data Layouts Results

112[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant.
SoCC 2011]

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Initial 2009 2010 2011 2011 2011
Row CFile Cheetah RCFile CIF Trojan

Read Unnecessary
columns

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

Tuple
Reconstruction

High network costs

Block level
compression

Poor I/O Saving Poor I/O Saving

Single Layout Single Layout Single Layout Single Layout Single Layout

Data Layouts in MapReduce

Which Layout to Use?

114

Well...

115

... it depends on your
query workload

116

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

Lessons Learned

117

Low Record
Selectivity

High Record
Selectivity

Low Attribute
Selectivity Row Row Groups

Medium Attribute
Selectivity Column Groups Row Groups +

Column Groups

High Attribute
Selectivity PAX Row Groups +

PAX

MapReduce
Intro

Job Optimization

Data Layouts

Indexing

Indexing

DBMS as Data Storage
(HadoopDB)

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads. PVLDB 2009]

120

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

1TB of Data

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

upload

Data Loader
1TB of Data

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

upload

Data Loader

Data Upload Steps

1TB of Data

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

upload

Data Loader
(1) Global partition on a given key

Data Upload Steps

10GB 10GB 10GB

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

...

upload

Data Loader
(1) Global partition on a given key
(2) Local partition on smaller chunks

Data Upload Steps

1GB 1GB 1GB 1GB 1GB 1GB

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

upload

Data Loader
(1) Global partition on a given key
(2) Local partition on smaller chunks
(3) Bulk-loading to local DBMSs

Data Upload Steps

Index Creation

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 121

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

JobTracker

SMS Planner
Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

JobTracker

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

run job

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(pageURL, adRevenue)
}

reduce (pageURL, adRevenue[]) {
output(pageURL,
 average(adRevenue[])

}
JobTracker

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

run job

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(pageURL, adRevenue)
}

reduce (pageURL, adRevenue[]) {
output(pageURL,
 average(adRevenue[])

}
JobTracker

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

M1 Mi Mn

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

run job

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(pageURL, adRevenue)
}

reduce (pageURL, adRevenue[]) {
output(pageURL,
 average(adRevenue[])

}
JobTracker

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

M1 Mi Mn

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

run job

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(pageURL, adRevenue)
}

reduce (pageURL, adRevenue[]) {
output(pageURL,
 average(adRevenue[])

}
JobTracker

SELECT pageURL, adRevenue
FROM UserVisits
WHERE sourceIP == 120.115.124.34

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

M1 Mi Mn

Node m Node nNode 1

DataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

DataNode m DataNode n

Local DBMS 1 Local DBMS m Local DBMS n

run job

map (offset, tuple) {
if (sourceIP == 120.115.124.34)

output(pageURL, adRevenue)
}

reduce (pageURL, adRevenue[]) {
output(pageURL,
 average(adRevenue[])

}
JobTracker

SELECT pageURL, adRevenue
FROM UserVisits
WHERE sourceIP == 120.115.124.34

SMS Planner
SQL-like

Query

SELECT pageURL, AVG(adRevenue)
FROM UserVisits
WHERE sourceIP == 120.115.124.34
GROUP BY pageURL

Job Execution

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 122

M1 Mi Mn

HadoopDB Results (Selection Task)

pageURL
pageRank
avgDuration

Rankings Dataset

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 123

HadoopDB Results (Selection Task)

SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > 10

pageURL
pageRank
avgDuration

Rankings Dataset Query

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009] 123

HadoopDB Results (Selection Task)

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB 2009]

0

20

40

60

80

100

120

10 50 100

Jo
b

ru
nt

im
e

[s
]

Number of nodes

Hadoop HadoopDB

123

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

But...
inside MapReduce?

125

Indexing Levels

126

Indexing Levels

• File Level: filters HDFS Blocks

126

Indexing Levels

• File Level: filters HDFS Blocks

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

126

Indexing Levels

• File Level: filters HDFS Blocks

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

Filter Condition:
 sourceIP == 120.115.124.34

126

Indexing Levels

• File Level: filters HDFS Blocks

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

Filter Condition:
 sourceIP == 120.115.124.34

126

Indexing Levels

• File Level: filters HDFS Blocks

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

Filter Condition:
 sourceIP == 120.115.124.34

126

Indexing Levels

• File Level: filters HDFS Blocks

• Block Level: filters records

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

Filter Condition:
 sourceIP == 120.115.124.34

126

Indexing Levels

• File Level: filters HDFS Blocks

• Block Level: filters records

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

..

. HDFS Block 1
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

Filter Condition:
 sourceIP == 120.115.124.34

126

Indexing Levels

• File Level: filters HDFS Blocks

• Block Level: filters records

...
125.102.135.45, espn.com, 2011/12/01, 123.35, football
123.95.100.24, abc.com, 2011/12/21, 26.02, politics
145.111.145.1, sports.com, 2011/12/20, 630.30, basket

101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

..

.

..

.

HDFS Block 1

HDFS Block m

..

. HDFS Block 1
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
102.192.235.245, voici.com, 2011/12/19, 955.83, people
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

Filter Condition:
 sourceIP == 120.115.124.34

126

File-Level Indexing
(Blocks Directory)

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB
2010]

127

DN i

HDFS

DN n

.
DN 1

UserVisits sorted on visitDate
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

..

.

Index Creation

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 128

DN i

HDFS

DN n

.
DN 1

UserVisits sorted on visitDate
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

..

.

upload

..

.

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

Index Creation

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 128

DN i

HDFS

DN n

.
DN 1

UserVisits sorted on visitDate
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

..

.

upload

..

.

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

2011/12/01 , 2011/12/31, block-1

2012/08/01 , 2011/08/31, block-n
..
.

Index:

Index Creation

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 128

DN i

HDFS

DN n

.
DN 1

UserVisits sorted on visitDate
125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

..

.

upload

..

.

125.102.135.45, espn.com, 2011/12/01, 123.35, football
101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis
120.115.124.34, vldb.org, 2011/12/03, 296.02, database

120.145.104.14, abc.com, 2011/12/31, 98.63, elections

2011/12/01 , 2011/12/31, block-1

2012/08/01 , 2011/08/31, block-n
..
.

Index:

first key in block
last key in block

block id

Index Creation

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 128

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

(with two input splits)

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

(with two input splits)

Job Execution

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 129

M1 M2

File-Level Indexing Results (Selection Task)

0

20

40

60

80

10 50 100

Jo
b

ru
nt

im
e

[s
]

Number of nodes

Hadoop HadoopDB HadoopIdx

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010] 130

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

Full-Text Indexing

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-
Scale Data Analytics. MapReduce Workshop 2011]

132

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Indexing Procedure

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Indexing Procedure
(1) for each Row Group

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Indexing Procedure
(1) for each Row Group
(2) create pseudo-document

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Tweets Dataset
“Mexico won the gold medal in soccer”
“Hadoop summit was awesome!”
“Hello from the other side of the world”

...
“Visiting Istanbul today!”
“Come in numbers to the HAIL talk!”
“I released our Hadoop-based system today”

Row Group 1

Row Group n

Indexing Procedure
(1) for each Row Group
(2) create pseudo-document
(3) index the pseudo-document in Lucene

Index Creation

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 133

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

set of offsets

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

set of offsets

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobClient

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

set of offsets

134

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobTracker

JobClient

submit job

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

set of offsets

134

M1 M2

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

Job Execution

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011]

Tweets Dataset

JobTracker

JobClient

submit job

job
map (rowGroupID, tweet) {

if (tweet.contains(“Hadoop”))
output(tweet, rowGroupID)

}

Lucene

getRowGroupsFor(“Hadoop”)

set of offsets

134

M1 M2

Full-Text Indexing Results

Tweets Dataset: 69.2 million tweets
Dataset Size: 6.07GB
#Row Groups: 39,767
Avg #Records per Row Group: 1,740

Setup

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 135

Full-Text Indexing Results

Tweets Dataset: 69.2 million tweets
Dataset Size: 6.07GB
#Row Groups: 39,767
Avg #Records per Row Group: 1,740

Setup

on the field in question (at the LZO block level). Upon sub-
mission of a Hadoop job, the inverted index is consulted,
and only those blocks that match the selection criterion are
decompressed and scanned (more precisely, we process only
those blocks known to contain at least one matching record
of interest). Throughout this paper, we will illustrate with
the running example of selecting tweets that match a partic-
ular keyword, with the understanding that the technique is
broadly applicable to any type of record with free-text fields
or other semi-structured data (for example, we could just as
easily index HTTP logs by IP addresses).

3.1 Implementation
Based on the organization of our analytics stack, the ap-

propriate granularity of full-text inverted indexes on free-
text fields is at the LZO block level—critically, not at the
level of individual records. Since LZO-compressed data must
be read a block at a time, precisely pinpointing which record
contains a particular keyword brings little additional bene-
fit (beyond pinpointing the relevant block), since the entire
LZO block must be decompressed anyway.

For each LZO block, we create a “pseudo document” con-
sisting of the text of all tweets contained in the block. These
pseudo documents are then indexed with Lucene, an open-
source retrieval engine.5 To obtain compact indexes, we do
not store term frequency information and term position in-
formation. Therefore, instead of simply concatenating all
tweets together in each pseudo document, tweets are pre-
processed to retain only one occurrence of each term and
enumerated in lexicographic order. The structure of the in-
dex limits us to coarse-grained boolean queries. Lack of po-
sitional information precludes phrase queries, although ex-
perimental results suggest this isn’t a severe limitation. The
tradeo↵ of query expressiveness for compact index structures
appears to be a good choice.

Upon submission of a Hadoop job, the inverted index is
consulted for blocks that meet the selection criterion; blocks
are referenced by byte o↵set positions. The input splits of
the dataset (i.e., partitions aligned with HDFS file blocks)
are first computed as usual. Next, the start of each input
split is advanced to the byte o↵set position of the first rel-
evant LZO block within that split. The list of LZO blocks
matching the selection criterion is then passed to the record
readers assigned to each input split.

In a normal Hadoop job, record readers are instantiated
on each of the worker nodes (via the TaskTrackers). Each
record reader then sequentially scans the input split it was
assigned to, decoding input records and passing them along
to the mapper code. In our implementation, the record read-
ers have been made aware of the LZO blocks matching the
selection criterion (i.e., from consulting the inverted index).
After processing a relevant LZO block, it skips ahead to the
next matching block. Blocks known not to match the se-
lection criterion are skipped, thus eliminating unnecessary
disk IO and additional overhead necessary to decode records.
Each relevant LZO block is processed as normal (i.e., the se-
lection criterion is applied to each tweet).

In our current implementation, which is best character-
ized as a proof of concept, the developer specifies the selec-
tion criterion as part of configuring the Hadoop job. This
design choice means that our optimization seamlessly inte-

5
http://lucene.apache.org/

Query Blocks Records Selectivity

1 hadoop 97 105 1.517 ⇥10�6

2 replication 140 151 2.182 ⇥10�6

3 bu↵er 500 559 8.076 ⇥10�6

4 transactions 819 867 1.253 ⇥10�5

5 parallel 999 1159 1.674 ⇥10�5

6 ibm 1437 1569 2.267 ⇥10�5

7 mysql 1511 1664 2.404 ⇥10�5

8 oracle 1822 1911 2.761 ⇥10�5

9 database 3759 3981 5.752 ⇥10�5

10 microsoft 13089 17408 2.515 ⇥10�4

11 data 20087 30145 4.355 ⇥10�4

Table 1: Queries used in our evaluation, hand picked
for di↵erent selectivity values. The third and fourth
columns indicate how many LZO blocks and how
many records contain each keyword, respectively.

grates with existing developer practices—if a selection cri-
terion is specified, the input splits are adjusted and record
readers are informed, as described above. Otherwise, the
Hadoop job executes as normal. We note that as part of
future work, selection optimizations can be automatically
performed by analyzing plans from Pig scripts. Our Ele-
phant Bird framework already generates custom Pig loaders
automatically, and Pig provides a mechanism by which it
can automatically push selection criteria from a script into
a loader. The loader would then simply have to inject the
criterion into the Hadoop job configuration as is done now
explicitly. This is fairly straightforward and not critical to
the performance of our optimization, so we did not imple-
ment the feature for the prototype discussed here.

3.2 Experimental Results
We present experimental results on the tweet stream for

an arbitrarily selected day, August 1, 2010. On that day,
69.2 million tweets were recorded, totaling 6.07 GB com-
pressed (beyond the actual tweets, each record stores related
metadata). The compressed file contains 39767 LZO blocks,
each 153 KB in size and containing 1740 records on average.
The Lucene full-text index occupies 531 MB, or a bit less
than a tenth of the size of the compressed dataset.
We selected a small set of queries by hand to represent a

range of selectivity values, shown in Table 1. The fourth
column shows the number of records (tweets) containing
the term, and the third column shows the number of LZO
blocks that contain matching records. Note that although
our test set of queries contains only single-term queries, more
complex boolean queries are possible (although not phrase
queries). The actual queries are not particularly important,
only the selectivity values they represent are. The experi-
mental task was very simple: selection of tweets that match
the relevant query term and writing those tweets to HDFS
without any additional processing. This simple task isolates
the impact of our selection optimization.
Experiments were run on a Hadoop cluster consisting of

87 nodes (each with dual quad core Xeons and 9 TB disk
storage), running Cloudera’s distribution of Hadoop. Since
this is a production cluster that is always running jobs, it
is quite tricky to obtain reliable performance measurements.
This is complicated by the relatively short running times of

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 135

Row Groups

Full-Text Indexing Results

Tweets Dataset: 69.2 million tweets
Dataset Size: 6.07GB
#Row Groups: 39,767
Avg #Records per Row Group: 1,740

Setup

on the field in question (at the LZO block level). Upon sub-
mission of a Hadoop job, the inverted index is consulted,
and only those blocks that match the selection criterion are
decompressed and scanned (more precisely, we process only
those blocks known to contain at least one matching record
of interest). Throughout this paper, we will illustrate with
the running example of selecting tweets that match a partic-
ular keyword, with the understanding that the technique is
broadly applicable to any type of record with free-text fields
or other semi-structured data (for example, we could just as
easily index HTTP logs by IP addresses).

3.1 Implementation
Based on the organization of our analytics stack, the ap-

propriate granularity of full-text inverted indexes on free-
text fields is at the LZO block level—critically, not at the
level of individual records. Since LZO-compressed data must
be read a block at a time, precisely pinpointing which record
contains a particular keyword brings little additional bene-
fit (beyond pinpointing the relevant block), since the entire
LZO block must be decompressed anyway.

For each LZO block, we create a “pseudo document” con-
sisting of the text of all tweets contained in the block. These
pseudo documents are then indexed with Lucene, an open-
source retrieval engine.5 To obtain compact indexes, we do
not store term frequency information and term position in-
formation. Therefore, instead of simply concatenating all
tweets together in each pseudo document, tweets are pre-
processed to retain only one occurrence of each term and
enumerated in lexicographic order. The structure of the in-
dex limits us to coarse-grained boolean queries. Lack of po-
sitional information precludes phrase queries, although ex-
perimental results suggest this isn’t a severe limitation. The
tradeo↵ of query expressiveness for compact index structures
appears to be a good choice.

Upon submission of a Hadoop job, the inverted index is
consulted for blocks that meet the selection criterion; blocks
are referenced by byte o↵set positions. The input splits of
the dataset (i.e., partitions aligned with HDFS file blocks)
are first computed as usual. Next, the start of each input
split is advanced to the byte o↵set position of the first rel-
evant LZO block within that split. The list of LZO blocks
matching the selection criterion is then passed to the record
readers assigned to each input split.

In a normal Hadoop job, record readers are instantiated
on each of the worker nodes (via the TaskTrackers). Each
record reader then sequentially scans the input split it was
assigned to, decoding input records and passing them along
to the mapper code. In our implementation, the record read-
ers have been made aware of the LZO blocks matching the
selection criterion (i.e., from consulting the inverted index).
After processing a relevant LZO block, it skips ahead to the
next matching block. Blocks known not to match the se-
lection criterion are skipped, thus eliminating unnecessary
disk IO and additional overhead necessary to decode records.
Each relevant LZO block is processed as normal (i.e., the se-
lection criterion is applied to each tweet).

In our current implementation, which is best character-
ized as a proof of concept, the developer specifies the selec-
tion criterion as part of configuring the Hadoop job. This
design choice means that our optimization seamlessly inte-

5
http://lucene.apache.org/

Query Blocks Records Selectivity

1 hadoop 97 105 1.517 ⇥10�6

2 replication 140 151 2.182 ⇥10�6

3 bu↵er 500 559 8.076 ⇥10�6

4 transactions 819 867 1.253 ⇥10�5

5 parallel 999 1159 1.674 ⇥10�5

6 ibm 1437 1569 2.267 ⇥10�5

7 mysql 1511 1664 2.404 ⇥10�5

8 oracle 1822 1911 2.761 ⇥10�5

9 database 3759 3981 5.752 ⇥10�5

10 microsoft 13089 17408 2.515 ⇥10�4

11 data 20087 30145 4.355 ⇥10�4

Table 1: Queries used in our evaluation, hand picked
for di↵erent selectivity values. The third and fourth
columns indicate how many LZO blocks and how
many records contain each keyword, respectively.

grates with existing developer practices—if a selection cri-
terion is specified, the input splits are adjusted and record
readers are informed, as described above. Otherwise, the
Hadoop job executes as normal. We note that as part of
future work, selection optimizations can be automatically
performed by analyzing plans from Pig scripts. Our Ele-
phant Bird framework already generates custom Pig loaders
automatically, and Pig provides a mechanism by which it
can automatically push selection criteria from a script into
a loader. The loader would then simply have to inject the
criterion into the Hadoop job configuration as is done now
explicitly. This is fairly straightforward and not critical to
the performance of our optimization, so we did not imple-
ment the feature for the prototype discussed here.

3.2 Experimental Results
We present experimental results on the tweet stream for

an arbitrarily selected day, August 1, 2010. On that day,
69.2 million tweets were recorded, totaling 6.07 GB com-
pressed (beyond the actual tweets, each record stores related
metadata). The compressed file contains 39767 LZO blocks,
each 153 KB in size and containing 1740 records on average.
The Lucene full-text index occupies 531 MB, or a bit less
than a tenth of the size of the compressed dataset.
We selected a small set of queries by hand to represent a

range of selectivity values, shown in Table 1. The fourth
column shows the number of records (tweets) containing
the term, and the third column shows the number of LZO
blocks that contain matching records. Note that although
our test set of queries contains only single-term queries, more
complex boolean queries are possible (although not phrase
queries). The actual queries are not particularly important,
only the selectivity values they represent are. The experi-
mental task was very simple: selection of tweets that match
the relevant query term and writing those tweets to HDFS
without any additional processing. This simple task isolates
the impact of our selection optimization.
Experiments were run on a Hadoop cluster consisting of

87 nodes (each with dual quad core Xeons and 9 TB disk
storage), running Cloudera’s distribution of Hadoop. Since
this is a production cluster that is always running jobs, it
is quite tricky to obtain reliable performance measurements.
This is complicated by the relatively short running times of

Highly selective queries

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 135

Row Groups

Full-Text Indexing Results

Tweets Dataset: 69.2 million tweets
Dataset Size: 6.07GB
#Row Groups: 39,767
Avg #Records per Row Group: 1,740

Setup

on the field in question (at the LZO block level). Upon sub-
mission of a Hadoop job, the inverted index is consulted,
and only those blocks that match the selection criterion are
decompressed and scanned (more precisely, we process only
those blocks known to contain at least one matching record
of interest). Throughout this paper, we will illustrate with
the running example of selecting tweets that match a partic-
ular keyword, with the understanding that the technique is
broadly applicable to any type of record with free-text fields
or other semi-structured data (for example, we could just as
easily index HTTP logs by IP addresses).

3.1 Implementation
Based on the organization of our analytics stack, the ap-

propriate granularity of full-text inverted indexes on free-
text fields is at the LZO block level—critically, not at the
level of individual records. Since LZO-compressed data must
be read a block at a time, precisely pinpointing which record
contains a particular keyword brings little additional bene-
fit (beyond pinpointing the relevant block), since the entire
LZO block must be decompressed anyway.

For each LZO block, we create a “pseudo document” con-
sisting of the text of all tweets contained in the block. These
pseudo documents are then indexed with Lucene, an open-
source retrieval engine.5 To obtain compact indexes, we do
not store term frequency information and term position in-
formation. Therefore, instead of simply concatenating all
tweets together in each pseudo document, tweets are pre-
processed to retain only one occurrence of each term and
enumerated in lexicographic order. The structure of the in-
dex limits us to coarse-grained boolean queries. Lack of po-
sitional information precludes phrase queries, although ex-
perimental results suggest this isn’t a severe limitation. The
tradeo↵ of query expressiveness for compact index structures
appears to be a good choice.

Upon submission of a Hadoop job, the inverted index is
consulted for blocks that meet the selection criterion; blocks
are referenced by byte o↵set positions. The input splits of
the dataset (i.e., partitions aligned with HDFS file blocks)
are first computed as usual. Next, the start of each input
split is advanced to the byte o↵set position of the first rel-
evant LZO block within that split. The list of LZO blocks
matching the selection criterion is then passed to the record
readers assigned to each input split.

In a normal Hadoop job, record readers are instantiated
on each of the worker nodes (via the TaskTrackers). Each
record reader then sequentially scans the input split it was
assigned to, decoding input records and passing them along
to the mapper code. In our implementation, the record read-
ers have been made aware of the LZO blocks matching the
selection criterion (i.e., from consulting the inverted index).
After processing a relevant LZO block, it skips ahead to the
next matching block. Blocks known not to match the se-
lection criterion are skipped, thus eliminating unnecessary
disk IO and additional overhead necessary to decode records.
Each relevant LZO block is processed as normal (i.e., the se-
lection criterion is applied to each tweet).

In our current implementation, which is best character-
ized as a proof of concept, the developer specifies the selec-
tion criterion as part of configuring the Hadoop job. This
design choice means that our optimization seamlessly inte-

5
http://lucene.apache.org/

Query Blocks Records Selectivity

1 hadoop 97 105 1.517 ⇥10�6

2 replication 140 151 2.182 ⇥10�6

3 bu↵er 500 559 8.076 ⇥10�6

4 transactions 819 867 1.253 ⇥10�5

5 parallel 999 1159 1.674 ⇥10�5

6 ibm 1437 1569 2.267 ⇥10�5

7 mysql 1511 1664 2.404 ⇥10�5

8 oracle 1822 1911 2.761 ⇥10�5

9 database 3759 3981 5.752 ⇥10�5

10 microsoft 13089 17408 2.515 ⇥10�4

11 data 20087 30145 4.355 ⇥10�4

Table 1: Queries used in our evaluation, hand picked
for di↵erent selectivity values. The third and fourth
columns indicate how many LZO blocks and how
many records contain each keyword, respectively.

grates with existing developer practices—if a selection cri-
terion is specified, the input splits are adjusted and record
readers are informed, as described above. Otherwise, the
Hadoop job executes as normal. We note that as part of
future work, selection optimizations can be automatically
performed by analyzing plans from Pig scripts. Our Ele-
phant Bird framework already generates custom Pig loaders
automatically, and Pig provides a mechanism by which it
can automatically push selection criteria from a script into
a loader. The loader would then simply have to inject the
criterion into the Hadoop job configuration as is done now
explicitly. This is fairly straightforward and not critical to
the performance of our optimization, so we did not imple-
ment the feature for the prototype discussed here.

3.2 Experimental Results
We present experimental results on the tweet stream for

an arbitrarily selected day, August 1, 2010. On that day,
69.2 million tweets were recorded, totaling 6.07 GB com-
pressed (beyond the actual tweets, each record stores related
metadata). The compressed file contains 39767 LZO blocks,
each 153 KB in size and containing 1740 records on average.
The Lucene full-text index occupies 531 MB, or a bit less
than a tenth of the size of the compressed dataset.
We selected a small set of queries by hand to represent a

range of selectivity values, shown in Table 1. The fourth
column shows the number of records (tweets) containing
the term, and the third column shows the number of LZO
blocks that contain matching records. Note that although
our test set of queries contains only single-term queries, more
complex boolean queries are possible (although not phrase
queries). The actual queries are not particularly important,
only the selectivity values they represent are. The experi-
mental task was very simple: selection of tweets that match
the relevant query term and writing those tweets to HDFS
without any additional processing. This simple task isolates
the impact of our selection optimization.
Experiments were run on a Hadoop cluster consisting of

87 nodes (each with dual quad core Xeons and 9 TB disk
storage), running Cloudera’s distribution of Hadoop. Since
this is a production cluster that is always running jobs, it
is quite tricky to obtain reliable performance measurements.
This is complicated by the relatively short running times of

168,675 additional records

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 135

Row Groups

Full-Text Indexing Results

Tweets Dataset: 69.2 million tweets
Dataset Size: 6.07GB
#Row Groups: 39,767
Avg #Records per Row Group: 1,740

Setup

on the field in question (at the LZO block level). Upon sub-
mission of a Hadoop job, the inverted index is consulted,
and only those blocks that match the selection criterion are
decompressed and scanned (more precisely, we process only
those blocks known to contain at least one matching record
of interest). Throughout this paper, we will illustrate with
the running example of selecting tweets that match a partic-
ular keyword, with the understanding that the technique is
broadly applicable to any type of record with free-text fields
or other semi-structured data (for example, we could just as
easily index HTTP logs by IP addresses).

3.1 Implementation
Based on the organization of our analytics stack, the ap-

propriate granularity of full-text inverted indexes on free-
text fields is at the LZO block level—critically, not at the
level of individual records. Since LZO-compressed data must
be read a block at a time, precisely pinpointing which record
contains a particular keyword brings little additional bene-
fit (beyond pinpointing the relevant block), since the entire
LZO block must be decompressed anyway.

For each LZO block, we create a “pseudo document” con-
sisting of the text of all tweets contained in the block. These
pseudo documents are then indexed with Lucene, an open-
source retrieval engine.5 To obtain compact indexes, we do
not store term frequency information and term position in-
formation. Therefore, instead of simply concatenating all
tweets together in each pseudo document, tweets are pre-
processed to retain only one occurrence of each term and
enumerated in lexicographic order. The structure of the in-
dex limits us to coarse-grained boolean queries. Lack of po-
sitional information precludes phrase queries, although ex-
perimental results suggest this isn’t a severe limitation. The
tradeo↵ of query expressiveness for compact index structures
appears to be a good choice.

Upon submission of a Hadoop job, the inverted index is
consulted for blocks that meet the selection criterion; blocks
are referenced by byte o↵set positions. The input splits of
the dataset (i.e., partitions aligned with HDFS file blocks)
are first computed as usual. Next, the start of each input
split is advanced to the byte o↵set position of the first rel-
evant LZO block within that split. The list of LZO blocks
matching the selection criterion is then passed to the record
readers assigned to each input split.

In a normal Hadoop job, record readers are instantiated
on each of the worker nodes (via the TaskTrackers). Each
record reader then sequentially scans the input split it was
assigned to, decoding input records and passing them along
to the mapper code. In our implementation, the record read-
ers have been made aware of the LZO blocks matching the
selection criterion (i.e., from consulting the inverted index).
After processing a relevant LZO block, it skips ahead to the
next matching block. Blocks known not to match the se-
lection criterion are skipped, thus eliminating unnecessary
disk IO and additional overhead necessary to decode records.
Each relevant LZO block is processed as normal (i.e., the se-
lection criterion is applied to each tweet).

In our current implementation, which is best character-
ized as a proof of concept, the developer specifies the selec-
tion criterion as part of configuring the Hadoop job. This
design choice means that our optimization seamlessly inte-

5
http://lucene.apache.org/

Query Blocks Records Selectivity

1 hadoop 97 105 1.517 ⇥10�6

2 replication 140 151 2.182 ⇥10�6

3 bu↵er 500 559 8.076 ⇥10�6

4 transactions 819 867 1.253 ⇥10�5

5 parallel 999 1159 1.674 ⇥10�5

6 ibm 1437 1569 2.267 ⇥10�5

7 mysql 1511 1664 2.404 ⇥10�5

8 oracle 1822 1911 2.761 ⇥10�5

9 database 3759 3981 5.752 ⇥10�5

10 microsoft 13089 17408 2.515 ⇥10�4

11 data 20087 30145 4.355 ⇥10�4

Table 1: Queries used in our evaluation, hand picked
for di↵erent selectivity values. The third and fourth
columns indicate how many LZO blocks and how
many records contain each keyword, respectively.

grates with existing developer practices—if a selection cri-
terion is specified, the input splits are adjusted and record
readers are informed, as described above. Otherwise, the
Hadoop job executes as normal. We note that as part of
future work, selection optimizations can be automatically
performed by analyzing plans from Pig scripts. Our Ele-
phant Bird framework already generates custom Pig loaders
automatically, and Pig provides a mechanism by which it
can automatically push selection criteria from a script into
a loader. The loader would then simply have to inject the
criterion into the Hadoop job configuration as is done now
explicitly. This is fairly straightforward and not critical to
the performance of our optimization, so we did not imple-
ment the feature for the prototype discussed here.

3.2 Experimental Results
We present experimental results on the tweet stream for

an arbitrarily selected day, August 1, 2010. On that day,
69.2 million tweets were recorded, totaling 6.07 GB com-
pressed (beyond the actual tweets, each record stores related
metadata). The compressed file contains 39767 LZO blocks,
each 153 KB in size and containing 1740 records on average.
The Lucene full-text index occupies 531 MB, or a bit less
than a tenth of the size of the compressed dataset.
We selected a small set of queries by hand to represent a

range of selectivity values, shown in Table 1. The fourth
column shows the number of records (tweets) containing
the term, and the third column shows the number of LZO
blocks that contain matching records. Note that although
our test set of queries contains only single-term queries, more
complex boolean queries are possible (although not phrase
queries). The actual queries are not particularly important,
only the selectivity values they represent are. The experi-
mental task was very simple: selection of tweets that match
the relevant query term and writing those tweets to HDFS
without any additional processing. This simple task isolates
the impact of our selection optimization.
Experiments were run on a Hadoop cluster consisting of

87 nodes (each with dual quad core Xeons and 9 TB disk
storage), running Cloudera’s distribution of Hadoop. Since
this is a production cluster that is always running jobs, it
is quite tricky to obtain reliable performance measurements.
This is complicated by the relatively short running times of

>30% of Row Groups are read!

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 135

Row Groups

Full-Text Indexing Results

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11

E
nd

-to
-e

nd
 ru

nn
in

g
tim

e
(s

)

Query

optimized
baseline

Figure 2: End-to-end job completion times for each
of our queries, across 20 trials for each condition.
Error bars show standard errors.

all jobs (< 1 minute). Our solution was to avoid peak hours
and run many trials, hopefully smoothing out the “back-
ground noise” of concurrent jobs. Each experimental run
consists of ten trials each of the baseline (brute force se-
quential scan) and optimized selection, alternating, for all
11 queries (220 trials total). We then repeated the experi-
mental run (i.e., all 220 trials) again at a di↵erent time. We
report aggregate statistics across all trials, including those
that were clearly a↵ected by concurrently running jobs (since
due to our alternating trials, cluster load would a↵ect each
condition equally).

In all cases except for optimized selection with the queries
‘hadoop’ and ‘replication’, each job yielded 46 tasks (i.e., the
input file spans 46 HDFS blocks). With those two queries,
the jobs launched only 32 tasks—only those input splits con-
tained a relevant LZO block.

Performance was measured in two ways: first, the end-to-
end running time of the query; second, the cumulative time
spent by all the mappers, which quantifies the total amount
of work necessary to complete the job. This is accomplished
by instrumenting the job with Hadoop counters. The end-
to-end running times are shown in Figure 2 for each of the
queries (in the same order as in Table 1). Error bars denote
standard error across all of the runs. Running times for the
optimized selection include consulting the Lucene inverted
index to enumerate all matching LZO blocks, which takes
less than a second on average. Figure 3 shows the cumulative
running times, i.e., sum total across all map tasks. Error
bars also show standard error.

We can see that optimized selection has a noticeable but
not substantial e↵ect on end-to-end running times. We ex-
plain this result as follows: First, Hadoop jobs are relatively
slow in starting up, since the architecture was optimized
for large batch processes. In fact, a significant portion of
the processing time in both conditions is taken up by the
fixed job overhead. Second, since our jobs are short-lived, it
means that idiosyncratic interactions with concurrent jobs
(i.e., in scheduling) can have a substantial impact on end-
to-end running times. Finally, since the job occupies only
a small fraction of the entire cluster capacity (46 tasks out
of a total of 870 task slots across the cluster), all tasks run

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10 11

C
um

ul
at

iv
e

ru
nn

in
g

tim
e

(s
)

Query

optimized
baseline

Figure 3: Cumulative running times for each of our
queries (i.e., sum of amount of time spent in all the
mappers), across 20 trials for each condition. Error
bars show standard errors.

in parallel. From what we could tell, cluster capacity was
not saturated during our experimental runs by concurrently
running jobs. As a result, the end-to-end running time is
bound by the slowest task. For substantially larger jobs,
end-to-end performance will be bound by the throughput
of task completion, and not simply task latency. Note that
since we ran experiments on a production cluster, it was not
practical to experiment with large jobs that might interfere
with production processes. Nevertheless, for ad hoc analyt-
ics tasks at Twitter, it is common to process substantially
larger datasets.
Despite these caveats, we still see noticeable reductions

in end-to-end running times, ranging from approximately
30% for the most selective query and approximately 6% for
the least selective query. However, it appears that for the
least selective query in our testset, our selection optimization
provides little benefit in terms of end-to-end running time
(more on this later when we present our analytical model).
Turning our attention to the cumulative running time, i.e.,

the sum of running times across all mappers (Figure 3), we
see significant reductions, varying with the selectivity of the
query. This makes intuitive sense, since the amount of work
saved by our optimization is directly related to the selectiv-
ity of the query. From Figure 3, we also get a sense of the
job overhead of Hadoop—in the brute force case, each task
runs for around 15 seconds, and in some of the optimized
selection cases, each task runs for no more than a few sec-
onds. The heavy overhead in job startup is a known issue
in Hadoop, and is said to be somewhat mitigated in more
recent distributions of the software.
Nevertheless, the conclusions from these experiments are

fairly clear. Our selection optimization decreases end-to-end
running time moderately for small, selective queries. How-
ever, the cumulative running time results suggest greater
gains for larger queries and substantial increases for query
throughput (i.e., with many concurrent queries).

3.3 Analytical Model
To complement our experimental results, we present a

simple analytical model that predicts the number of com-

Full-Text Index
Hadoop

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.
MapReduce Workshop 2011] 136

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

Trojan Index

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++:
Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing).

PVLDB 2010]
138

... ...block i+1 block i+2 block i+3 block i+4 block i+5 block i+6 block i+7block i

HDFS

Index Creation

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

139

... ...block i+1 block i+2 block i+3 block i+4 block i+5 block i+6 block i+7block i

HDFS

MapReduce Job

map()

reduce()

Index Creation

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

139

... ...block i+1 block i+2 block i+3 block i+4 block i+5 block i+6 block i+7block i

HDFS

MapReduce Job

map()

reduce()

CSS-tree index

Metadata

... ...block i+1 block i+2 block i+3 block i+4 block i+5 block i+6 block i+7block i

HDFS

Index Creation

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

139

DN i

HDFS

DN n
.

DN 1

MapReduce

TT 1 TT i TT n

.

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

140

DN i

HDFS

DN n
.

DN 1

run job

MapReduce

TT 1 TT i TT n

.

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

140

M1 Mi Mn

DN i

HDFS

DN n
.

DN 1

run job

MapReduce

TT 1 TT i TT n

read

.

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

140

M1 Mi Mn

DN i

HDFS

DN n
.

DN 1

run job

MapReduce

TT 1 TT i TT n

read

.

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

140

M1 Mi Mn

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

(1) Read header to obtain [keymin, keymax]-range of index
RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

(1) Read header to obtain [keymin, keymax]-range of index
(2) if search key overlaps [keymin, keymax]-range:

RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

(1) Read header to obtain [keymin, keymax]-range of index
(2) if search key overlaps [keymin, keymax]-range:
(3) read CSS-tree into main memory

RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

(1) Read header to obtain [keymin, keymax]-range of index
(2) if search key overlaps [keymin, keymax]-range:
(3) read CSS-tree into main memory
(4) read and pass only qualifying records to map()

RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

DN i

HDFS

DN n
.

DN 1

SData T... ...

DataSet

Indexed Split i

Trojan Index

Header Footer

(1) Read header to obtain [keymin, keymax]-range of index
(2) if search key overlaps [keymin, keymax]-range:
(3) read CSS-tree into main memory
(4) read and pass only qualifying records to map()
(5) else: skip this split

RecordReader

Job Execution

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

141

0

25

50

75

100

10 50 100

Jo
b

ru
nt

im
e

[s
]

Number of nodes

Hadoop HadoopDB Trojan Index

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010] 142

Block-Level Indexing Results (Selection Task)

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

Can We Exploit them
All Together?

144

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

Putting All Together

145

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobClient

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

M1

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

Node m Node nNode 1

DataNode m DataNode nDataNode 1

...
HDFS

Map
Reduce ...TaskTracker 1 TaskTracker m TaskTracker n

JobTracker

JobClient

submit job

job

map (offset, tuple) {
if (visitDate >= 2012/01/01 &&
 visitDate <= 2012/02/31 &&
 sourceIP == 120.115.124.34)

output(pageURL, sourceIp)
}

...

...

...
Jan-logs

Feb-logs

Dec-logs

UserVisits Log

Putting All Together

145

M1

Index Server

getRowGroupsFor(“120.115.124.34”)

set of offsets

perform index scan using a Trojan Index

146

Still,

146

Long index creation times
Still,

One clustered index per
dataset

146

Long index creation times
Still,

&

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive
Elephants are Fast Elephants. PVLDB 2012]

Hadoop Aggressive
Indexing Library

(HAIL)

147

Inspired by
Trojan Data Layouts1

1[A. Jindal, J. Quiané, J. Dittrich: Trojan Data Layouts: Right Shoes for a
Running Elephant. SoCC 2011]

148

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

2009 2010 2011 2010 2012
HadoopDB File Level Full Text Trojan HAIL

Still a database

Global Sorting

Only for high
selectivity

High upload time High upload time High upload time High upload time

Single Index Single Index Single Index Single Index

Single Layout Single Layout Single Layout Single Layout

Indexing in MapReduce

TALK:
 Only Aggressive Elephants are Fast Elephants
 Wednesday August 29th
 11:30 a.m. at the Convention Lower Hall 2
 (Research Session 13: MapReduce II)

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast
Elephants. PVLDB 2012] 150

TALK:
 Only Aggressive Elephants are Fast Elephants
 Wednesday August 29th
 11:30 a.m. at the Convention Lower Hall 2
 (Research Session 13: MapReduce II)

Invisible Index Creation Times:
 up to 7.3 times faster than Hadoop++

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast
Elephants. PVLDB 2012] 150

TALK:
 Only Aggressive Elephants are Fast Elephants
 Wednesday August 29th
 11:30 a.m. at the Convention Lower Hall 2
 (Research Session 13: MapReduce II)

Fast Data Upload:
 up to 1.6 times faster than Hadoop

Invisible Index Creation Times:
 up to 7.3 times faster than Hadoop++

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast
Elephants. PVLDB 2012] 150

TALK:
 Only Aggressive Elephants are Fast Elephants
 Wednesday August 29th
 11:30 a.m. at the Convention Lower Hall 2
 (Research Session 13: MapReduce II)

Fast Data Upload:
 up to 1.6 times faster than Hadoop

Invisible Index Creation Times:
 up to 7.3 times faster than Hadoop++

Fast Job Runtimes:
 up to ~70 times faster than Hadoop and Hadoop++

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast
Elephants. PVLDB 2012] 150

MapReduce
Intro

Job Optimization

Data Layouts

Indexing

Jorge-Arnulfo Quiané-Ruiz

computer science

saarland
university

Jens Dittrich

Efficient Big Data Processing
in Hadoop MapReduce

Copyright of all slides: Jens Dittrich and
Jorge Quiané 2012

