
Interesting-Phrase Mining for Ad-Hoc Text Analytics

Srikanta Bedathur†, Klaus Berberich†, Jens Dittrich‡,
Nikos Mamoulis†∗, Gerhard Weikum†

†Max-Planck-Institut für Informatik ‡Saarland University
Saarbrücken, Germany Saarbrücken, Germany

{bedathur,kberberi,nmamouli,weikum}@mpi-inf.mpg.de
jens.dittrich@cs.uni-saarland.de

ABSTRACT
Large text corpora with news, customer mail and reports, or Web 2.0
contributions offer a great potential for enhancing business-intelligence
applications. We propose a framework for performing text ana-
lytics on such data in a versatile, efficient, and scalable manner.
While much of the prior literature has emphasized mining key-
words or tags in blogs or social-tagging communities, we empha-
size the analysis of interesting phrases. These include named en-
tities, important quotations, market slogans, and other multi-word
phrases that are prominent in a dynamically derived ad-hoc sub-
set of the corpus, e.g., being frequent in the subset but relatively
infrequent in the overall corpus. We develop preprocessing and in-
dexing methods for phrases, paired with new search techniques for
the top-k most interesting phrases in ad-hoc subsets of the corpus.
Our framework is evaluated using a large-scale real-world corpus
of New York Times news articles.

1. INTRODUCTION
With the dramatic growth of business-relevant information in

various textual sources, such as user-interaction logs (web clicks
etc.), news, blogs, and Web 2.0 community data, text analytics is
getting a key role in modern data mining and Business-Intelligence
(BI) for decision support. Analysts are often interested in examin-
ing a set of specifically compiled documents, to identify their char-
acteristic words or phrases or discriminate it from a second set. Tag
clouds and evolving taglines are prominent examples of this kind
of analyses [2, 6, 18]. While there is ample work on this topic
for word or tag granularities, there is very little prior research on
mining variable-length phrases. Such interesting phrases include
names of people, organizations, or products, but also news head-
lines, marketing slogans, song lyrics, quotations of politicians or
actors, and more.

In this paper, we focus on the analysis of interesting phrases in
ad-hoc, dynamically derived document collections, for example, by
a keyword query or metadata-based search from a large document
corpus. Interestingness can be defined with the help of statistical
∗on leave from the University of Hong Kong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

measures that compare the local frequency of a phrase in the ad-
hoc collection with its global frequency in the entire archive. For
example, consider the results of keyword query “Steve Jobs” on
a news archive. The most interesting phrases may include “apple

chief executive”, “mac os x”, “the computer maker”. The ratio
local/global frequency of these phrases is high, therefore they are
deemed appropriate in characterizing the query results.

In [23] a phrase inverted index is developed for finding the most
interesting phrases in an ad-hoc subset D� of the overall corpus D.
As a preprocessing step, for each phrase, identifiers of documents
in D that contain the phrase are collected into an index list, built
in an IR-style inverted-file fashion [28]. In order to compute the
frequencies of the phrases in D�, the inverted lists are accessed and
intersected with D�. An approximate counting technique that inter-
sects only a sampled subset of each list with D� is proposed; still, a
very large number of lists has to be accessed – potentially as large
as the number of phrases, regardless of the size of D�. As news,
blogs, and web-usage corpora become rapidly larger, the phrase-
inverted-index method becomes practically infeasible for interac-
tive analytics. In fact, the experiments in [23] only reported results
on a corpus of 30,000 publications.

In this paper, we develop an efficient alternative to [23] with
much better scalability. We pre-process the documents in the entire
corpus D and extract all phrases (above some minimum-support
threshold). We then encode and index the phrases contained in
each document in a forward index list. Given a subset D� ⊂ D,
in order to determine the frequencies and compute the interesting-
ness of the phrases there, we scan and merge the forward index
lists of the documents in D�. We propose several variants of this
approach, based on different ways of ordering and compressing the
phrases in the lists. These variants in turn lead to alternative algo-
rithms for the phrase mining, with different capabilities for pruning
the search space. As the number of phrases that are contained in D�

can be very large, we focus on finding the top-k interesting phrases.
We offer a systems-level solution that scales to very large corpora
D. Our methods are evaluated using a corpus of nearly two million
articles from the New York Times archive. Our problem setting
differs from classic sequence mining [27] by the ad-hoc nature of
the subset D� of D: D� is dynamically derived from queries and we
gear for this novel situation by judicious indexing of D.

The rest of the paper is organized as follows. Section 2 defines
a representative interestingness measure for phrases in an ad-hoc
subset of a corpus. In Section 3, we present alternative meth-
ods for indexing the document corpus and searching for interesting
phrases, including the framework that we propose in this paper. We
experimentally demonstrate the efficiency and scalability of our ap-
proaches in Section 4. Section 5 reviews related work and Section 6
concludes the paper.

2. PROBLEM DEFINITION
This paper deals with mining interesting phrases in a document col-
lection derived by a query. A phrase is a sequence of terms that
appear contiguously in the text. The frequency of a phrase p in a
collection of documents T is denoted by freq(p, T) and defined
as the number of documents in T , which contain p.freq(p, T) =
count{d : d ∈ T ∧p ∈ d}. Let D be a document corpus and D� be
an ad-hoc subset of it containing all documents that satisfy a query.
A straightforward measure for interestingness of a phrase p with re-
spect to D� is simply the local phrase frequency freq(p,D�). How-
ever, this favors common phrases that contain stopwords and have
a high frequency in the whole corpus. A more appropriate measure
is Definition 1, which normalizes the occurrences of a phrase in D�

by its global frequency in D.

DEFINITION 1. Let D�
be an ad-hoc subcollection of a docu-

ment corpus D. Let p be a phrase. The interestingness ID(p,D�)
of p w.r.t. D�

is defined by:

ID(p,D�) =
freq(p,D�)
freq(p,D)

(1)

It may not be realistic to compute ID for all phrases that appear
in any document of D�. So, we define our mining problem as find-
ing the k phrases with the highest interestingness. In the next sec-
tion, we show how the corpus D can be pre-processed and indexed,
in order to solve this problem.

3. INDEXING AND MINING TECHNIQUES
In this section, we investigate methods for mining interesting

phrases. We first outline a baseline method that does not rely on
indexing the corpus D. Then, we review the inverted indexing
approach of [23] and discuss how it can be applied to solve our
problem. Finally, we present in detail our forward indexing pro-
posal, investigating alternative ways to order the contents of the
lists, which either facilitate compressibility or allow for early ter-
mination of top-k interesting-phrase search in D�.

Phrases that occur in very few documents of the corpus D are
expected to give little insight to the analyst. Therefore, we restrict
our search to only phrases that exist in a minimum number of docu-
ments τ (e.g., τ = 5 or 10). We denote this set of candidate phrases
by C. We also limit ourselves to phrases with meaningful length
limits, between configurable bounds minlength and maxlength.
We typically consider minlength=2, thus disregarding all indi-
vidual words – single terms in information-retrieval jargon, but
capturing person names and composite nouns. For maxlength,
5 would be a canonical choice, as this still considers short catch-
phrases (e.g., in quotations or slogans) but excludes entire sen-
tences. C can be computed at a pre-processing phase, by scanning
each document d ∈ D using a sliding window to extract all phrases
of lengths minlength to maxlength. Duplicate phrases in d are
removed (by sorting or hashing) and then a counter is increased for
each phrase in d. Finally, the phrases whose counters are at least
τ are inserted to C. As we use a small value of maxlength, con-
sidering phrases of various lengths simultaneously is more efficient
than using a sequence mining approach (e.g., [27]) that would scan
the documents multiple times.

3.1 A Baseline Method
A baseline approach for computing the local frequencies in D�

of all phrases in C is to perform a window-scan over each docu-
ment d ∈ D� and extract all phrases. By keeping a hash map for
the phrases, we can count the documents that contain them. In the

end, assuming that we have pre-processed and indexed the global
frequencies of all phrases (i.e., set C), for each phrase in the hash
map, we look up its global frequency and compute ID(p,D�) ac-
cording to Definition 1.

This method is expected to be expensive because of the high
scanning cost, even for compressed text documents, since it in-
volves tokenization (e.g., identifying sentence boundaries). The
cost can be reduced if we replace the original document represen-
tations by term-ID arrays, after having defined a mapping between
tokens and term IDs at a preprocessing phase on the complete cor-
pus. This way, the token processing cost can be saved. In addition,
term IDs can be compressed to save storage. Still, even after this
improvement, there is a burden of window-scanning the term-ID
arrays and formulating the phrases. If a phrase appears multiple
times in the same document, we still need to care for not double-
counting it (by hash-set lookups). In addition, document-counters
for each phrase have to be maintained and updated during the pro-
cess. Overall, we need more effective approaches than this baseline
method.

3.2 Phrase-Inverted Indexing
As a module of their multidimensional context exploration frame-

work, Simitsis et al. proposed in [23] a method for finding inter-
esting phrases in an ad-hoc subset of a document corpus. Their
definition for interestingness (termed relevance in the paper) is a
normalized version of our Definition 1. Their approach to find the
most interesting phrases efficiently is to create a phrase inverted

index for the corpus as follows. During a preprocessing phase, for
each phrase p, an inverted list that contains the IDs of documents
that include p is constructed. Now, the local frequency of a phrase
p in D� can be found by intersecting the inverted list of p with D�.
The global frequencies are already stored in the heads of the lists
(they are equal to the list lengths); therefore, by iterating through
all inverted lists we can find the interestingness of all phrases and
determine the top-k response set. IntersectingD� with long lists can
be accelerated by randomizing the contents of the lists and (i) skip-
ping uniformly over the randomized lists, (ii) stopping after a max-
imum number of comparisons or when a large enough intersection
is already found. This way, an accurate approximation of the local
frequency can be obtained (see [23] for more details).

As an example, consider a corpus D of 20 documents and a
set C = {p1, p2, . . . , p12} of phrases having a minimum support
τ = 4. Table 1 (left) shows the inverted lists for the phrases in C.
The length of each list pi is shown in brackets and the list contents
are the document IDs that contain the phrase. Consider a subset of
D containing documents D� = {d1, d4, d5, d9, d12, d17, d18, d20}.
By intersecting D� with each inverted list we can compute the inter-
estingness of the corresponding phrase, as shown in Table 1 (right).
For k = 2, the top-k phrases with the highest interestingness are
p2 and p6, with ID(p2,D�) = 4/4 and ID(p6,D�) = 5/6.

The main drawback of this approach is that the whole set of in-
verted lists must be scanned to obtain the result. In a typical corpus
consisting of few thousand documents millions of phrases can be
found. In order to avoid scanning all inverted lists, [23] suggest
computing the K phrases (K > k) with the highest local frequency
first, and then post-processing them using the interestingness for-
mula to find the k most interesting phrases in them. To find these
K phrases efficiently, they store and access the phrase-inverted lists
in decreasing global frequency order, and terminate as soon as the
K-th smallest local frequency found is greater than the global fre-
quencies of the remaining phrases. However, there is no guarantee
that the real k most interesting phrases will be included in the K

locally most frequent ones. Consider again the example of Table

Table 1: Example of a phrase-inverted index
phrase contents
p1(4) {d2, d3, d9, d13}
p2(4) {d4, d5, d12, d18}
p3(4) {d5, d8, d16, d17}
p4(4) {d9, d12, d16, d19}
p5(5) {d4, d5, d12, d16, d19}
p6(6) {d3, d4, d5, d9, d12, d18}
p7(8) {d1, d2, d4, d9, d12, d15, d16, d17}
p8(9) {d3, d4, d8, d9, d12, d14, d17, d18, d20}
p9(10) {d1, d3, d4, d5, d9, d10, d12, d17, d18, d19}
p10(10) {d1, d2, d3, d4, d5, d8, d10, d12, d17, d20}
p11(11) {d2, d4, d5, d6, d9, d12, d13, d15, d17, d18, d20}
p12(12) {d1, d3, d4, d5, d7, d9, d10, d12, d13, d17, d18, d20}

ID
1/4
4/4
2/4
2/4
3/5
5/6
5/8
6/9
7/10
6/10
7/11
8/12

1 and assume that we find the K = 6 phrases with the largest lo-
cal frequency first and then the top-k most interesting ones among
these for k = 2. Finding the K locally most frequent phrases re-
quires scanning all inverted lists of Table 1 in reverse order until p5.
By then, there are already K = 6 phrases of local frequency 5 or
more (these are p6 to p12). However, the top-2 interesting phrases
p12 to p5 do not include p2, which is among the two actual most
interesting phrases in D�. Therefore, the method of [23] has to be
regarded as an approximate method.

3.3 Forward Indexing
Our forward indexing approach creates for each document d ∈

D a list Fd, which contains the phrases from C that are included in
d. Thus, we replace the (exact) textual content of a document, by
the phrases from C included in it. While in [23] the inverted lists
of the vast majority of phrases are intersected with the input set of
documents D�, in our approach, we intersect the forward lists only
of the documents in D�, in order to obtain the frequency of phrases
in D�. The advantage is that the number of accessed lists for finding
the frequent phrases directly depends on the size of D�, not D.

The basic algorithm on this scheme (Algorithm 1) performs a
|D�|-way merge join, by scanning the sorted input lists in paral-
lel. During the merge, for the current phrase p, the local frequency
freq(p,D�) can be counted by the number of inputs where p is
seen. The interestingness of p can be determined by accessing its
global frequency. Global frequencies can either be explicitly stored
in the forward lists (e.g., embedded in phrase IDs) or kept in a sep-
arate phrase-dictionary in memory. Thus, we can update the set of
top-k interesting phrases after every output of the merge operator
and the whole process can terminate with one synchronized scan
over the forward lists of the documents in D�. Depending on how
the phrases in the forward lists are ordered, in the rest of this sec-
tion, we investigate different alternatives of our indexing scheme,
that improve upon this basic algorithm.

Algorithm 1 Basic Forward Index Search
FWB(D�, k)

1: R = ∅ � contains k phrases of highest ID(p,D�)
2: perform |D�|-way merge join of the lists Fd for all d ∈ D�

3: for each output phrase p do
compute freq(p,D�), compute ID(p,D�) and update R to include p
if applicable

4: return R

3.4 Frequency-based Ordering and
Early Termination

It is possible to adapt Algorithm 1 to avoid scanning the forward
lists Fd for each d ∈ D� completely, if the order of the phrases p in
each list is defined according to their global frequency freq(p,D).

That is, less frequent phrases appear first in the forward lists of the
documents. While the lists are scanned in parallel by Algorithm 1
(and R is being updated), we know that for any phrase p that has
not been seen so far, the maximum possible ID(p,D�) value is

max
p
ID

= min

1,

|D�|
freq(p,D)

ff
(2)

Due to the ordering of phrases in the lists, if phrase p precedes
phrase q in this order, max

q
ID
≤ max

p
ID

. Therefore, as soon as for
the next unexamined phrase p, max

p
ID
≤ θ, where θ is the lowest

interestingness of phrases in the current top-k set R, the algorithm
can safely terminate reporting R as the result. Algorithm 2 shows
how Algorithm 1 can be extended along these lines.

Sorting the phrases according to their global frequencies in the
forward lists allows for an economic embedding of these frequen-
cies into the lists. Since multiple phrases share the same frequency,
we can use a representation that stores the phrases that have the
same frequency as a group and the frequency once in the heading
of the group. This way, the global frequency needs not be accessed
at an external hash table. Table 2 is an illustration of this stor-
age model. Alternatively, global frequencies can be embedded in
the identifiers of the phrases, occupying the most significant bits, to
force frequency-based ordering and access to frequencies by means
of ID decoding.

Algorithm 2 Forward Index Search with Early Termination
FWE(D�, k)

1: R = ∅ � contains k phrases of highest ID(p,D�)
2: perform |D�|-way merge join of the lists Fd for each d ∈ D�

3: for each p, output by the merge operator do
compute freq(p,D�)
compute ID(p,D�)
update R to include p if applicable
maxp

ID
= min{1, |D�|

freq(p,D)}
θ = k-th interestingness value in R
if maxp

ID
≤ θ terminate merge-join

4: return R

As an example, let D� = {d1, d4, d5, d9, d12, d17, d18, d20}. Ta-
ble 2 shows the forward lists of the documents in D�, wherein the
phrases are grouped and ordered in ascending global frequency or-
der. Assume that we are looking for the top-2 most interesting
phrases. The forward lists are synchronously scanned and merged.
At the point after |D�| equals the global frequency of the last ac-
cessed phrase plast from the merger (i.e., plast = p7), we can start
applying the early termination test. At this stage, the 2 phrases with
the highest interestingness are R = {p2, p6} and θ = freq(p6,D�) =
5/6. Since θ < |D�|/freq(plast,D�), we cannot terminate, as it
is possible to find a phrase later that can enter the top-2 set R. The
algorithm terminates after p9 is found and |D�|/freq(p9,D�) =
8/10 < θ. In practice, as demonstrated by our experiments in
Section 4, this method can prune a large percentage of the lists, es-
pecially if they contain phrases with very high global frequency in
their tails.

3.5 Prefix-maximal Phrases and
Lexicographic Phrase Ordering

An important issue with the forward indexing scheme is its space
requirements. Since all phrases in C that are contained in a docu-
ment must be included in the corresponding forward list, the sizes
of the lists may grow significantly, even after compressing the phrase
representations in them. In this section, we investigate the possi-
bility of reducing the sizes of these lists by avoiding to index all

Table 2: Example of a forward index
list contents
Fd1 (9)p8 (10)p9, p10 (12)p12
Fd4 (4)p2 (5)p5 (6)p6 (8)p7 (9)p8 (10)p9, p10 (11)p11 (12)p12
Fd5 (4)p2, p3 (5)p5 (6)p6 (10)p9, p10 (11)p11 (12)p12
Fd9 (4)p1, p4 (6)p6 (8)p7 (9)p8 (10)p9 (11)p11 (12)p12
Fd12 (4)p2, p4 (5)p5 (6)p6 (8)p7 (9)p8 (10)p9, p10 (11)p11 (12)p12
Fd17 (4)p3 (8)p7 (9)p8 (10)p9, p10 (11)p11 (12)p12
Fd18 (4)p2 (6)p6 (9)p8 (10)p9 (11)p11 (12)p12
Fd20 (9)p8 (10)p10 (11)p11 (12)p12

phrases in them.
The main idea comes from the monotonicity of freq(p,D) with

respect to the set-containment relationships between phrases. If a
phrase p is included in a document d, all sub-phrases p

� ⊂ p should
also be present in d. Therefore, if we include p in the forward list
Fd of d, it is not necessary to add any p

� ⊂ p there; the contents of
the forward lists can be minimized, if we include only the maximal-
length phrases (in C) that are present in each document.

Figure 1(a) shows the contents of three documents. For ease of
presentation, we denote distinct terms by characters and the con-
tent of a document as a string (i.e., sequence of terms). Figure 1(b)
shows the set of distinct phrases of length minlength = 1 to
maxlength = 4 that occur in each document. Assuming that C
contains only phrases up to length 4 and that all such phrases are
included in C, Figure 1(c) shows the maximal-length phrases in
each document. Clearly, if we include only these, the lengths of the
forward lists can be greatly reduced.

On the other hand, this compressed representation complicates
evaluation. Now, computing freq(p,D�) for an arbitrary phrase p

cannot be achieved by simply scanning (and intersecting) the for-
ward lists (i.e., using Algorithm 1). For example, assuming that
D� = {d1, d2, d3}, it is not clear how the local frequency of phrase
“bef” can be obtained by intersecting the lists shown in Figure 1(c).
Fortunately, there is a forward-list format that avoids indexing the
majority of non-maximal phrases and allows computing the fre-
quencies of all phrases efficiently at a single scan of the lists. Our
proposal is based on the concept of prefix-maximal phrases which
we define below:

DEFINITION 2. A phrase p is prefix-maximal w.r.t. document

d ∈ D, if (i) p ∈ C (i.e., p is globally frequent), (ii) p ∈ d, and

(iii) there exists no phrase p
� ∈ C, such that p is a prefix of p

�
and

p
� ∈ d.

For example, in Figure 1(a), phrase “abc” is not prefix-maximal
w.r.t. d1 because d1 also contains “abcd” and “abc” is a prefix of
“abcd”.

Now, we adapt the forward index to contain for each document
d only the prefix-maximal phrases w.r.t. d. In addition, in each for-
ward list, the phrases are ordered lexicographically. Figure 1(d)
shows the prefix-maximal forward lists for the documents of Fig-
ure 1(a). Observe that the lists are only slightly larger than those
containing only maximal phrases (Figure 1(c)), but significantly
smaller than the lists containing all phrases (Figure 1(b)).

Having constructed this index, the challenge is to adapt Algo-
rithm 1 to compute the interestingness of all phrases contained in
D�. This is not straightforward, as we need to avoid over-counting
of subphrases that are not explicitly stored in the forward lists but
implied by prefix-maximal phrases which contain them. Algo-
rithm 3 is a pseudocode of this adaptation. The lists are merged,
and the prefix-maximal phrases at all inputs are retrieved in lexico-
graphical order. Figure 1(e) shows the order by which the phrases
are retrieved when merging the lists of Figure 1(d) — ignore the

doc contents
d1 abcabef
d2 defabce
d3 bdaceda

doc phrases
d1 a,ab,abc,abca,abe,abef,b,bc,bca,

bcab,be,bef,c,ca,cab,cabe,e,ef,f
d2 a,ab,abc,abce,b,bc,bce,c,ce,d,de,

def,defa,e,ef,efa,efab,f,fa,fab,fabc
d3 a,ac,ace,aced,b,bd,bda,bdac,c,ce,

ced,ceda,d,da,dac,dace,e,ed,eda
(a) (b)

doc maximal phrases
d1 abca, abef, bcab, cabe
d2 abce, defa, efab, fabc
d3 aced, bdac, ceda, dace

doc prefix-maximal phrases
d1 abca, abef, bcab, bef, cabe, ef, f
d2 abce, bce, ce, defa, efab, fabc
d3 aced, bdac, ceda, dace, eda

(c) (d)

merged stream
abca(1), abce(1), abef(3), aced(1), bcab(1), bce(1), . . .

(e)

Figure 1: Example of prefix-maximal lists

numbers in parentheses for the moment. At each access, the al-
gorithm identifies the changes in the prefix of the current phrase
p, compared to the previous phrase pprev (Line 10).1 Specifically,
it finds the longest common prefix s between p and pprev . Every
prefix of pprev that is longer than s corresponds to a phrase that
can never be seen subsequently by the algorithm (because prefix-
maximal phrases are sorted lexicographically in the lists). Thus,
the local frequencies of all these prefixes in D� can be immediately
determined and output (Lines 13–16).

In order to compute the local frequencies of all prefixes correctly,
we keep a list of counters C, one for each possible phrase length.
For each new prefix-maximal phrase p encountered, say from doc-
ument dj we check its difference to the previous phrase p

j
prev seen

at document dj (Line 9). For all positions in s, where pprev and
p

j
prev differ, we increase the corresponding counter, in order to take

into consideration that the corresponding prefixes have been seen at
dj (Line 11–12) and avoiding over-counting for the prefixes where
pprev and p

j
prev are common (these have been counted when p

j
prev

was considered). When comparing p with pprev , for all prefixes
that are different, we compute the local frequencies of the corre-
sponding prefixes using the counters (Lines 13–16). Then, for the
current phrase p, we initialize the counters for the new prefixes to
1. Finally, after the last phrase is accessed from the merged input,
we use the existing counters to count and output the frequencies
of all its prefixes (Lines 20–23). Summing up, Algorithm 3 cor-
rectly computes the local frequencies of all phrases by merging the
forward lists containing the prefix-maximal phrases.

p
j
prev can be computed if the algorithm (or the merger) keeps

track of the previous phrase seen at each input. In our implemen-
tation, we avoid its computation by embedding this information in
the inverted lists. That is, together with the phrase representation,
we also store for each phrase the first position where it differs from
the previous phrase in the same list. This information is also used
for compressing the lists, as it indicates the common prefix between
consecutive phrases; this prefix needs not be repeated in the repre-
sentation of the next phrase. Figure 1(e) shows, for each phrase
p that is produced by the merger, the first position where p differs
with p

j
prev in brackets.

As an example, let us see how the local frequencies of all phrases
in D� = d1, d2, d3 can be computed, using the forward index of
Figure 1(d). First, we initialize an array of 4 counters, assuming
that the minimum (maximum) length of a phrase in C is 1 (4). The
first phrase that comes from the merger (see Figure 1(e)) is “abca”
from input d1, therefore we set pprev =“abca” and add 1 to all 4

1Since we merge multiple inputs, p could be identical to pprev .

Algorithm 3 Merging Prefix-Maximal Forward Lists
FWP(D�, k)

1: C = new array of counters � initially 0
2: p = first phrase from merger
3: j = input where p was seen
4: for all positions i of p do
5: C[i] = C[i] + 1 � count prefixes of p seen at j-th input
6: pprev = p � track prev. phrase
7: while p = next phrase from merger do � while more phrases
8: j = input where p was seen
9: jpos = first position where p and pj

prev differ
10: dpos = first position where p and pprev differ
11: for i = jpos to dpos-1 do � count current input
12: C[i] = C[i] + 1

13: outp = first dpos− 1 terms of pprev � common prefix
14: for i = dpos to len(pprev) do � for each diff. prefix
15: append pprev [i] to outp
16: freq(outp,D�) = C[i] � set frequency
17: for i = dpos to len(p) do � reset counters
18: C[i] = 1

19: pprev = p � track prev. phrase
20: outp = ∅ � handle all prefixes of last phrase
21: for i = 1 to len(pprev) do
22: append pprev [i] to outp
23: freq(outp,D�) = C[i]

counters. The next phrase is “abce” (seen at input j = d2) and the
first positions where it differs with p

j
prev and pprev are jpos=1 and

dpos=4, respectively (pj
prev is null, as p is the first phrase seen at

input j = d2). The algorithm will increase the counters for posi-
tions 1 though 3, reflecting that the prefixes “a”, “ab”, and “abc”
have been seen also at input j = d2. In addition, “abca” (i.e., the
common prefix “abc” of pprev and p padded with the last term of
pprev) will be output, with frequency C[4]=1. Next, counter C[4]
is reset to 1 and pprev are updated to “abce”, before accessing the
next phrase p =“abef” from the merger. This phrase differs at po-
sitions jpos=3 and dpos=3 from p

j
prev=“abca” and pprev=“abce”,

respectively. No counters are updated (since jpos=dpos), and the
algorithm outputs “abc” and “abce” with frequencies 2 and 1, re-
spectively, while resetting C[3] and C[4] to 1. Note that at any
stage the counters will correctly capture the number of inputs where
all prefixes of pprev have been seen.

Algorithm 3 computes only the local frequencies of phrases (at
Lines 16 and 23) but not their interestingness. The global frequen-
cies of the non-maximal phrases (required for the computation of
interestingness) are not explicitly included in the index, so for the
interestingness of each phrase to be computed we need to do a look-
up at a hash table that stores the global frequencies of all phrases.
This table typically fits in memory and searches are efficient.

Summing up, Algorithm 3 operates on a very economical repre-
sentation of the forward lists. On the other hand, it has to exhaus-
tively access all merged lists, being unable to apply early termina-
tion heuristics like Algorithm 2, due to the lexicographic ordering
of phrases in the lists as required for this method.

4. EXPERIMENTAL EVALUATION
We used the recently released annotated New York Times cor-

pus [21] for our experimental evaluation, which includes more than
1.8 million New York Times articles published between 1987 and
2007. The raw size of the textual content is about 8 GB. The dataset
includes rich metadata (e.g., an article’s publication date, topical
classification, and author biography), as well as, annotations (e.g.,
persons, organizations, and places mentioned in an article).

All methods described in this paper were implemented in Java
(using SUN JDK 1.6). Experiments were run on a SUN server-
class machine having 16 GB of main memory, four AMD Opteron
single-core CPUs, a large network-attached RAID-5 disk array, and
running Windows Server 2003.

For processing keyword queries, we employ conjunctive seman-
tics, i.e., all query keywords are mandatory for a document to be
reported as a result. Disjunctive queries were also tested, but we do
not report the results here, as no significant performance difference
was observed for them. We use Okapi BM25 [20, 22] (using the
established parameter setting k1 = 1.2 and b = 0.75), as a state-
of-the-art relevance model to rank result documents. Further, we
index the dataset such that metadata and annotations provided with
it can easily be leveraged at query time. For example, in the terms
of a document with publication date March 11th we add the artifi-
cial term publication_date$March_11th,_1999. Notice, though,
that these artificial terms are hidden from the relevance model and
thus do not affect the relative ranking of results.

Table 3 shows the different indexing methods and their represen-
tations that we compare against each other. TermID is a baseline
method which replaces each document by a sequence of term IDs.
IntArray models phrases as term ID arrays (e.g., “Steve Jobs” is
translated to [441,312], assuming that Steve is term 441 and Jobs

is term 312). Phrases in forward lists are ordered lexicographically
and Algorithm 1 is used for merging. FreqIntArray encodes phrases
as term ID arrays, phrases in lists are sorted in decreasing global
frequency order, and the global frequency of each phrase is kept ex-
plicitly in the list, as explained in Section 3.4 and illustrated in Ta-
ble 2. Algorithm 1 is used. In PhraseID, we globally assign phrase
IDs, according to their global frequency. For each phrase p, we set
the first 32 bit-block of its phrase ID (of type long) to the global
frequency freq(p,D). The second 32 bit-block is used to break
ties among phrases having the same global frequency. EarlyTermi-

nationFreqIntArray and EarlyTerminationPhraseID, use the same
representation as FreqIntArray and PhraseID, respectively, but Al-
gorithm 2 is used instead of Algorithm 1. PrefixMaxIntArray is
similar to IntArray, but only prefix-maximal phrases are stored in
the lists and Algorithm 3 is used. We compare our methods to an
implementation of MCX, in accordance to [23], where we first find
the K=1000 phrases with the highest local frequency using the in-
dex and then post-process them to find the k most interesting ones.
The maximum number of comparisons per approximate list inter-
section is set to M = 64.

4.1 Queries
We defined a set of benchmark queries, which we consider to re-

flect the envisioned application. Our queries, as shown in Figure 2
with their respective result sizes, are subdivided into three cate-
gories, namely, (i) person-related queries, (ii) news-related queries,
and (iii) location-related queries. The first two categories are stan-
dard keyword queries, whose choice was inspired by Google’s Zeit-
geist [10] service. For the third category, we make use of the topical
classification provided with the dataset.

4.2 Index Sizes
Our first experiment compares the different methods with regard

to the size of their corresponding indexes. For each of the meth-
ods, we generated the corresponding indexes for different values of
the minimum support threshold (τ); in each case, we only index
phrases whose global frequency in the corpus D is at least τ . In all
cases, we index only phrases of lengths between 2 and 5.

As Figure 3 shows, the TermID representation is the most eco-
nomical (consuming about 1.8 GB of space), as only the terms are

(i) Person-Related Keyword Queries
jennifer lopez (1,130), osama bin laden (5,951), eminem (796), steve
jobs (2,982), kobe bryant (1,385), paris hilton (1,119), harry potter
(2,053), martha stewart (3,044), camilla parker bowles (173), prince
charles (4,019), barack obama (867), hillary clinton (11,073), rudy giu-
liani (2,485), martin luther king (6,533), george harrison (2,494)

(ii) News-Related Keyword Queries
world trade center (25,562), american airlines (14,187), world cup
(17,974), winter olympics (4,357), korea (22,474), hurricane katrina
(3,515), american idol (3,009), tsunami (1,452), bankruptcy (21,188),
iphone (82), presidential election (26,492), aol time warner merger
(588), sars (1,153), space shuttle columbia (1,322), tour de france
(3,328)

(iii) Location-Related Metadata Queries
/travel/guides/destinations/europe (94,789)
/travel/guides/destinations/middle_east (58,457)
/travel/guides/destinations/north_america (325,300)
/travel/guides/destinations/ asia (62,290)
/travel/guides/destinations/africa (22,592)
/travel/guides/destinations/europe/france (12,874)
/travel/guides/destinations/europe/france/rhone_valley/lyon (40)
/travel/guides/destinations/europe/germany (11,165)
/travel/guides/destinations/europe/italy (6,722)
/travel/guides/destinations/central_and_south_america (20,466)
/news/world/africa (14,961)
/news/world/asia_pacific (43,886)
/news/world/americas (26,710)
/news/world/europe (54,230)
/news/world/middle_east (46,020)

Figure 2: Keyword & metadata queries (number of query re-
sults given in parentheses)

Table 3: Query methods evaluated
method description
TermID baseline method, Section 3.1
IntArray

FreqIntArray Section 3.3
PhraseID

EarlyTerminationFreqIntArray Section 3.4EarlyTerminationPhraseID
PrefixMaxIntArray Section 3.5

MCX [23] (reviewed in Section 3.2)

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 0 10 20 30 40 50

In
de

x
Si

ze
 (b

yt
es

)

Minimum Support Threshold τ

TermID
IntArray

PrefixMaxIntArray
PhraseID

FreqIntArray
MCX

Figure 3: Index sizes (bytes) for different values of τ

included in each list. The PrefixMaxIntArray and PhraseID rep-
resentations follow. Even though PrefixMaxIntArray indexes only
prefix-maximal phrases, which are roughly equal to the number of
terms, because these are represented as integer arrays that occupy a
few bytes, the representation takes more space than TermID. Phra-
seID indexes all phrases, but keeping only a phrase identifier for
each of them, so its overhead over PrefixMaxIntArray is not high.

The phrase-inverted index employed by MCX and the IntArray rep-
resentation yield indexes that consume about the same amount of
space. Finally, the FreqIntArray representation produces indexes
that are considerably larger than the other methods. This is not sur-
prising, given that, in comparison to IntArray, the method keeps
additional information and suffers from lower compressibility, as
the phrases in a list are grouped primarily by global frequency and
there are large gaps between consecutive phrases in the same group.

4.3 Performance Comparison
In this set of experiments we examine the different methods with

regard to their query-processing performance. First, we investigate
how the cardinality of D� affects performance. We vary the cardi-
nality of the input D� between 100 and 10,000. We do this by using
only queries with larger results and truncating them to their highest
ranked 100 to 10,000 documents according to the per-query rele-
vance ranking. We fix the result size for the interesting phrases as
k = 100 and the minimum support threshold as τ = 10.

Figures 4 reports the mean wallclock time per query (measured
with warm caches) for the different approaches. MCX is not af-
fected by the input cardinality |D�|. It requires about 100 sec-
onds for a single query. In contrast, all other methods benefit from
smaller input cardinalities. For |D�| = 100 our best method Ear-
lyTerminationPhraseID outperforms MCX by three orders of mag-
nitude. For |D�| =1,000 the improvement over MCX is still more
than a factor of 128. For larger |D�| MCX becomes competitive to
some of our methods like IntArray, but is still outperformed by Ear-
lyTerminationFreqIntArray by a factor of 10. These results show
that MCX will only be competitive for very large input cardinal-
ities, but for such queries the phrase analysis cannot be done in
real-time, so its applicability is limited. On the other hand, for
our test corpus and the practical, medium-sized query results of
our benchmark, the forward-index-based methods are always the
method of choice. A full-fledged system should perhaps imple-
ment both methods and let a query optimizer decide which method
to use.

Figure 7 shows the amount of data read at query time for the
same experiment. We observe a linear increase for all forward in-
dexing methods starting at 200 KB for |D�| = 100 up to 6 MB for
|D�| =10,000. In contrast, MCX needs to read at least 3 GB in all
cases. For MCX we may also observe a slight decrease when in-
creasing |D�|. This is due to the fact that for larger |D�| this method
may stop earlier, as the top-K locally frequent phrases can be found
faster.

In a second experiment, we fix the result size as |D�| = 500, by
taking only the first 500 results of queries that exceed this selec-
tivity, and vary the minimum support threshold τ . In all cases, we
determine the k = 100 most interesting phrases. Figures 5 and 8
report the mean wallclock time per query (measured with warm
caches) and the mean amount of data read per query for the differ-
ent approaches, respectively. We skipped MCX from this compari-
son because its cost exceeded 100 seconds at all times.

The results in Figure 5 show that the baseline method TermID
requires about 4 seconds to compute a query. In contrast, the dif-
ferent forward indexing methods require at most 1.3 seconds for
all parameters. Among our methods, EarlyTerminationPhraseID
performs best requiring only 250 ms. This is by a factor of 8 bet-
ter than the baseline method. In addition, this method also out-
performs the other forward indexes like PrefixMaxIntArray which
takes about 1,000 to 750 ms. Although a worst-case theoretical
analysis (see Appendix A) suggests that PrefixMaxIntArray would
perform better, EarlyTerminationPhraseID is the winner because of
(i) the ultra-fast merging of phrase-IDs, (ii) its higher compressibil-

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000

W
al

lc
lo

ck
 T

im
e

(m
s)

Input Cardinality |D’|

TermID
IntArray

PrefixMaxIntArray
EarlyTermination PhraseID

EarlyTermination FreqIntArray
MCX

Figure 4: Wallclock times (ms) for dif-
ferent values of |D�|

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45 50

W
al

lc
lo

ck
 T

im
e

(m
s)

Minimum Support Threshold τ

TermID
IntArray

PrefixMaxIntArray
EarlyTermination PhraseID

EarlyTermination FreqIntArray

Figure 5: Wallclock times (ms) for dif-
ferent values of τ

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 10 100 1000

W
al

lc
lo

ck
 T

im
e

(m
s)

 Result Size k

PhraseId
FreqIntArray

EarlyTermination PhraseId
EarlyTermination FreqIntArray

Figure 6: Wallclock times (ms) for dif-
ferent values of k

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 100 1000 10000

D
at

a
R

ea
d

(b
yt

es
)

Input Cardinality |D’|

TermID
IntArray

PrefixMaxIntArray
EarlyTermination PhraseID

EarlyTermination FreqIntArray
MCX

Figure 7: Bytes read for different values
of |D�|

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 5 10 15 20 25 30 35 40 45 50

D
at

a
R

ea
d

(b
yt

es
)

Minimum Support Threshold τ

TermID
IntArray

PrefixMaxIntArray
EarlyTermination PhraseID

EarlyTermination FreqIntArray

Figure 8: Number of bytes read for dif-
ferent values of τ

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 10 100 1000

D
at

a
R

ea
d

(b
yt

es
)

 Result Size k

PhraseId
FreqIntArray

EarlyTermination PhraseId
EarlyTermination FreqIntArray

Figure 9: Number of bytes read for dif-
ferent values of k

ity, and (iii) the early termination heuristic.
Figure 8 shows the amount of data read during query processing

for the same experiment. Although the baseline TermID method
reads the fewest bytes (not surprisingly, as it only has to read the
termID representations of the documents), it has much higher query
cost than the forward indexing methods, as discussed above. From
these methods, EarlyTerminationPhraseID performs best, due to its
high compressibility when compared to integer-array phrases and
the effect of early termination. For EarlyTerminationFreqIntArray
we see a slight increase from τ = 5 to τ = 25. For very low values
of τ phrases might qualify as interesting if their global frequency
is very low. Thus their interestingness score is very high, which
is favorable for the early termination. Since these globally infre-
quent phrases tend to be long, EarlyTermination achieves higher
savings in terms of the amount of data read, when applied on the
FreqIntArray representation that keeps phrases explicitly as inte-
ger arrays. With increasing τ these globally infrequent phrases are
ruled out from both representations.

In general, the influence of parameter τ is relatively mild. This is
because after the initial pruning of extremely rare phrases (the long
tail of phrases that occur only once or twice), removing more infre-
quent phrases does not affect the lengths of the forward-index lists
too much. Because of these phrases being infrequent, their prob-
ability of occurring in the query-result documents is much lower
than the occurrence probability of a frequent phrase.

4.4 Effectiveness of Early Termination
Our last experiment studies the effectiveness of the early-termina-

tion method introduced in Section 3.4. For this, we fix the mini-
mum support threshold as τ = 10 and the cardinality of the input
as |D�| = 500 and vary the number k of interesting phrases to be
determined. Figures 6 and and 9 report the mean wallclock times

and mean amount of data read by the FreqIntArray and PhraseID
representations, with and without early termination. For k = 10,
EarlyTerminationPhraseID reads about 0.7 MB in 184 ms, while
for k = 500 it reads 1.1 MB in 263 ms. This is an increase of
about 57% and 42%, respectively, for a 50-fold increase of k, quite
a remarkably good result. Comparing the early-termination meth-
ods with their merge-based counterparts, one can observe signifi-
cant reductions both in terms of data read and wallclock time even
for large values of k.

5. RELATED WORK
Text analytics is increasingly gaining attention due to its value in

gathering business intelligence. Previous efforts in this regard have
primarily focused on term-level analytics, identifying terms that are
specific to a group of documents [6, 16, 24]. Some [7, 8, 13, 15,
19] have taken a multi-dimensional view of the text collection and
proposed OLAP-style models for performing drill-down/roll-up on
text databases, but remain at the level of terms.

While term-level analytics is important, it is not sufficient for
identifying important entity names or marketing slogans which have
tremendous value for business intelligence. Early approaches [1,
17] fall short in scaling to large-scale text collections or consider
only the collection as a whole but no ad-hoc document sets. Only
recently, the MCX system [23] was proposed as an important step
in the direction of scalable phrase-level analytics. As we explained
earlier, their framework identifies only the most frequent phrases
in a given set of documents, and then re-ranks these phrases based
on their interestingness. Further, as our results clearly show their
choice of using inverted indexes does not scale very well.

The idea of extracting phrases dynamically has also been ex-
plored by other communities. In [25] the use of phrases as a means
to guide the user through search results is studied. Since their fo-

cus is on at most the top-30 most relevant documents, scalability
issues, as we address them, do not play a role in their application.
In [26] point-wise mutual information (PMI), as a measure of a
phrase’s statistical surprisingness, is used to identify key phrases in
a document. Thus identified phrases from a document are used as a
signature of the document. The signature is then used for querying
the collection for similar or related documents. Our framework can
be easily adapted for the PMI-based interestingness measure.

Faceted search [12], as pioneered in the Flamenco project [9],
is akin to our work in dynamically aggregating information for ad-
hoc sets of documents. Although recent extensions [3, 5] move
beyond mere count-based aggregation of facets, the key difference
to our approach remains that facets are pieces of meta data about
the documents. Our approach, in contrast, operates directly on the
document contents.

In addition to scalable phrase-level analytics, good visualizations
are important for comprehending the results in an intuitive manner.
MemeTracker [18], TagLines [6], and BlogScope [2] have explored
this for visualizing bursty phrases, terms, or social annotations over
time. Similar interfaces could easily be built on top of our frame-
work, and would then enable exploration of interesting phrases for
ad-hoc document sets in a scalable and interactive manner, which
is not possible in any of the aforementioned systems.

Finding interesting phrases is related to mining frequent subse-
quences in sequence collections. However, the objectives of the two
problems are different, as we count the phrase (i.e., subsequence)
frequencies in an ad-hoc subset D� of the corpus D, by preprocess-
ing and indexing the whole corpus.

The vertical sequence mining approach [27] uses the same idea
of inverted indexing as MCX [23], but a inverted list is created for
each element (i.e., term) as opposed to subsequence (i.e., phrase).
Data structures similar to forward indexing in data mining, like the
FP-tree [11], have different objectives (i.e., compression of mul-
tiple transactions for faster itemset support computation vs. early
termination in our setting). Accessing such a data structure in a
branch-and-bound manner in order to find top-k discriminative pat-
terns has been proposed in [4]. Previous work in data mining which
is the most related to ours is [14]. Given two collections Dpos and
Dneg of sequences the objective is to find distinguishing subse-
quences that have high frequency in Dpos and low frequency in
Dneg . The method of [14] could be used to solve our interesting
phrase mining problem, by setting Dpos = D�, using D \ D� as
Dneg , and keeping track of the top-k results while counting the
supports of the phrases. However, this approach would be very
expensive. The sequences are generated and counted one-by-one,
and counting the frequency of a sequence requires scanning the po-
sitions of its previous-level subsequences in all documents of D�.

6. CONCLUSION
This paper has presented scalable techniques for interesting phrase

mining from large text corpora. In contrast to the state-of-the-art
method MCX [23], which solves the problem only approximately
and is inefficient for large corpora, our forward indexing method
scales very well with the corpus size. This is the decisive property
to enable users to perform interesting phrase analyses on large real
world datasets. We have provided several variants of forward in-
dexing and discussed the different trade-offs w.r.t. index size and
query response times. Our performance study used a large-scale
real-world corpus consisting of 1.8 million articles from New York
Times. We compared the different variants of our method against
MCX. The results confirm that our forward indexing scheme out-
performs MCX by orders of magnitude when the cardinality of the
documents to be analyzed is not impractically large.

As discussed in Appendix B, our methods are also applicable
to alternative definitions of phrase interestingness. In terms of fu-
ture work, we are planning to explore other more high-level query
types enabled by our method including: timeline interesting phrase
analysis, phrase groupings, as well as, an interesting phrase CUBE
operator.

7. REFERENCES
[1] H. Ahonen. Knowledge Discovery in Documents by Extracting

Frequent Word Sequences. Library Trends, 48(1), 1999.
[2] N. Bansal and N. Koudas. BlogScope: A System for Online Analysis

of High Volume Text Streams. In VLDB, 2007.
[3] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann,

S. Ofek-Koifman, D. Sheinwald, E. Shekita, B. Sznajder, and
S. Yogev. Beyond Basic Faceted Search. In WSDM ’08, 2008.

[4] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern
mining for effective classification. In ICDE, pages 169–178, 2008.

[5] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman. Dynamic
Faceted Search for Discovery-driven Analysis. In CIKM, 2008.

[6] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing Tags over Time. ACM Trans. Web, 1(2):7,
2007.

[7] R. Fagin, R. Guha, R. Kumar, J. Novak, D. Sivakumar, and
A. Tomkins. Multi-Structural Databases. In PODS, 2005.

[8] R. Fagin, P. Kolaitis, R. Kumar, J. Novak, D. Sivakumar, and
A. Tomkins. Efficient Implementation of Large-scale Multi-structural
Databases. In VLDB, 2005.

[9] Flamenco Project
http://flamenco.berkeley.edu.

[10] Google Zeitgeist
http://www.google.com/press/zeitgeist.html.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD Conference, pages 1–12, 2000.

[12] M. A. Hearst. Clustering versus Faceted Categories for Information
Exploration. Commun. ACM, 49(4):59–61, 2006.

[13] A. Inokuchi and K. Takeda. A Method for Online Analytical
Processing of Text Data. In CIKM, 2007.

[14] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing
subsequence patterns with gap constraints. In ICDM, 2005.

[15] S. Keith, O. Kaser, and D. Lemire. Analyzing Large Collections of
Electronic Text Using OLAP. CoRR, abs/cs/0605127, 2006.

[16] J. Kleinberg. Bursty and Hierarchical Structure in Streams. In KDD,
2002.

[17] B. Lent, R. Agrawal, and R. Srikant. Discovering Trends in Text
Databases. In KDD, 1997.

[18] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the
dynamics of the news cycle. In KDD, 2009.

[19] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube:
Computing IR Measures for Multidimensional Text Database
Analysis. In ICDM, 2008.

[20] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[21] New York Times Annotated Corpus
http://corpus.nytimes.com.

[22] S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Text

Retrieval Conference, 1999.
[23] A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwald.

Multidimensional Content eXploration. PVLDB, 1(1):660–671, 2008.
[24] Y. Sismanis, B. Reinwald, and H. Pirahesh. Document-Centric

OLAP in the Schema-Chaos World. In BIRTE, 2006.
[25] R. W. White, J. M. Jose, and I. Ruthven. Using Top-Ranking

Sentences to Facilitate Effective Information Access. JASIST,
56(10):1113–1125, 2005.

[26] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis, N. Koudas, and
D. Papadias. Query by Document. In WSDM, 2009.

[27] M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning, 42(1/2):31–60, 2001.

[28] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM

Comput. Surv., 38(2):6, 2006.

APPENDIX
A. SPACE AND TIME COMPLEXITIES OF

THE ALGORITHMS
All algorithms, except for the baseline method (Section 3.1),

have low memory requirements as no bookkeeping for temporary
counting of phrase frequencies is required by them. The baseline
method scans the documents in D� one-by-one and generates all
phrases dynamically, while counting their frequencies in a hash ta-
ble. The time complexity of this method is high, as O(ρ · T (D�))
phrases are generated and counted. The methods that operate on
the phrase-inverted index (Section 3.2) must scan the whole index
in the worst case and perform intersections of D� with all lists. This
results in a very high O(|C|· |D�|+ρ ·T (D)) worst-case cost, as D�

must be read and intersected |C| times and all postings in the index
should be read. In practice, the cost is lower, due to approximate
counting and early termination possibilities.

The worst-case cost of Algorithm 2 (and the simpler Algorithm 1)
is that of accessing all |D�| forward lists, of average length λ. Dur-
ing the merging of the lists, and each time a posting is produced
by the merger, the merger itself requires log |D�| time to update
its priority queue. Thus, the overall cost of Algorithms 1 and 2 is
O(|D�| log |D�| · λ). For Algorithm 3, the cost at each iteration is
dominated by looping over the positions of the current phrase p and
comparing it with pprev to determine dpos. Two more loops are re-
quired to generate the prefixes to be output and reset the counters.
Thus, the cost per access from the merger is O(ρ). Assuming that
the average length of a forward list in the prefix-maximal index of
Section 3.5 is λ

�
< λ, there are |D�| lists and |D�|λ� accesses in

total. Thus, the overall cost is O(|D�| ·λ�(ρ+log |D�|)). Typically
ρ < log |D�|, thus theoretically Algorithm 3 is more efficient than
Algorithm 2, while also requiring less space.

B. OTHER DEFINITIONS OF INTEREST-
INGNESS

Here, we discuss alternatives to Definition 1 for assessing the
interestingness of phrases and explain how our forward indexing
approaches can be used for each of these measures.

PMI-based surprising frequency. Point-wise mutual informa-
tion (PMI) is a measure from information theory for quantifying
surprise in the co-occurrence of terms, based on their joint (mul-
tivariate) probability versus independent (univariate) probabilities
[26]. Based on this, Definition 3 measures interestingness of a
phrase by dividing its frequency in D� by the product of the in-
dividual terms’ frequencies in D.2

DEFINITION 3. Let D�
be an ad-hoc subcollection of a docu-

ment corpus D. Let p be a phrase. The interestingness ID(p,D�)
of p w.r.t. D�

is defined by:

ID(p,D�) = log
freq(p,D�)

Πt∈pprob(t,D)
(3)

where prob(t,D) denotes the probability of term t to occur in a

random document from D.

We can compute the interestingness of p without having to know
its global frequency freq(p,D), but only the global frequencies
2In the classic PMI definition, the frequencies in the numerator and
denominator refer to the same set (i.e., either D or D�). Definition
3 complies with our interestingness concept, where the frequency
of a phrase in D� is divided by the expected frequencies of its terms
in the whole corpus.

of the terms, which are much fewer than the phrases that appear
in the corpus. All methods discussed in Section 3 can be imple-
mented to apply Definition 3, if we replace the global frequencies
of the phrases (wherever they are stored in the indexes) by the cor-
responding normalized term probability products. These products
can either be pre-processed and incorporated in the index or com-
puted on-the-fly by look-ups against a term dictionary.

Differential frequency to another query result. Instead of ex-
amining interestingness with respect to the whole corpus D, an ana-
lyst may wish to identify phrases that occur surprisingly frequently
in D� compared to another ad-hoc subset D�� of D, which is de-
rived by another query. D� and D�� could have any set-relationship
(e.g., disjoint, overlap, containment). For instance, assume that we
are interested in phrases that appear surprisingly frequently in doc-
uments D� relevant to “Steve Jobs” compared to documents D��

relevant to “Bill Gates”. For this purpose we can use the following
definition:

DEFINITION 4. Let D�
and D��

be two ad-hoc subcollections

of a document corpus D. Let p be a phrase. The interestingness

ID��(p,D�) of p w.r.t. D��
is defined by:

ID��(p,D�) =
1 + freq(p,D�)
1 + freq(p,D��)

(4)

We add 1 to both frequencies in order to prevent division by zero
if freq(p,D��) is 0. Finding the most interesting phrases based
on this definition using the suggested techniques is still possible,
however, the early termination heuristics may not be applicable.
The reason is that the phrases in the forward lists cannot be pre-
processed and ordered with respect to any ad-hoc subset D�� of the
corpus. Therefore, we need to first find the local frequencies of all

phrases in D� and D��, intersect them, and pick the top-k interest-
ing phrases according to Definition 4. Note that all methods de-
scribed in Section 3 can be used to compute the local frequencies
of all phrases, by disregarding global frequencies and any prun-
ing/termination condition. More importantly, our forward indexing
approaches facilitate evaluation in an operator-based fashion. If the
same algorithm is applied twice as two operators that compute the
local phrase frequencies in D� and D�� in parallel, the results from
the two operators can be pipelined to a merger, which computes the
interestingness of each phrase on-the-fly (as phrases are examined
in the same order) and updates the top-k set.

OLAP-style frequency analysis. Finally, our measures (e.g.,
Definition 1) can be applied at different partitions of a document
set, facilitating an OLAP-style analysis of interestingness, as shown
below.

DEFINITION 5. Let D�
be a subcollection of a document corpus

D comprising the documents that satisfy a keyword query q. Let

Gi, i = 1, . . . , m be a partitioning of D�
into m groups, according

to a combination of dimensional axes (e.g., time). Let p be a phrase.

We can define the interestingness ID�(p,Gi) of p w.r.t. group Gi, as

follows:

ID�(p,Gi) =
freq(p,Gi)
freq(p,D�)

(5)

Similarly to Definition 4, we can directly apply the forward list
merging approaches to find the most interesting phrases in each
group. Again, early termination is not possible, since the denomi-
nator refers to an ad-hoc document subset that is not known at index
time. While the forward lists of all documents in D� are merged,
we compute for each phrase one group counter per Gi, plus a local
frequency counter for the whole D�. For each phrase that is encoun-
tered, we can immediately compute its interestingness by applying

Definition 5 for each group. At the same time, we maintain for each
group the set of k most interesting phrases seen so far.

Weighted frequencies. All definitions above assume that the
documents in D� (or D��) have the same influence in phrase inter-
estingness. Nonetheless one could argue that if these documents
are obtained together with a relevance score (e.g., from a keyword
query), then we should weigh their contribution to the interesting-
ness of phrases, accordingly. This can be realized by altering the
definition of freq(p,D�) from freq(p,D�) = count{d : d ∈
D� ∧ p ∈ d} to freq(p,D�) =

P
d∈D�∧p∈d rel(d), where rel(d)

is the relevance of d to the query. Thus, instead of counting the
documents that contain p, we add their relevances to the query that
determines D�. This change does not affect the functionality of
the mining algorithms. On the other hand, it may allow for tech-
niques that examine only a subset of D� that is most relevant to the
query, find the top-k interesting phrases in that subset only and ob-
tain confidence bounds for their interestingness with respect to the
complete D�. Exploring this direction is left for future work.

