Accelerating Analytical Processing in MVCC using
Fine-Granular High-Frequency Virtual Snapshotting

Ankur Sharma

Felix Martin Schuhknecht

Jens Dittrich

Big Data Analytics Group
Saarland University
first.last@bigdata.uni-saarland.de

ABSTRACT

Efficient transaction management is a delicate task. As systems
face transactions of inherently different types, ranging from point
updates to long-running analytical queries, it is hard to satisfy their
requirements with a single execution engine. Unfortunately, most
systems rely on such a design that implements its parallelism using
multi-version concurrency control. While MVCC parallelizes short-
running OLTP transactions well, it struggles in the presence of
mixed workloads containing long-running OLAP queries, as scans
have to work their way through vast amounts of versioned data. To
overcome this problem, we reintroduce the concept of hybrid pro-
cessing and combine it with state-of-the-art MVCC: OLAP queries
are outsourced to run on separate virtual snapshots while OLTP
transactions run on the most recent version of the database. Inside
both execution engines, we still apply MVCC.

The most significant challenge of a hybrid approach is to gener-
ate the snapshots at a high frequency. Previous approaches heavily
suffered from the high cost of snapshot creation. In our approach
termed AnKer, we follow the current trend of co-designing underly-
ing system components and the DBMS, to overcome the restrictions
of the OS by introducing a custom system call vm_snapshot. It al-
lows fine-granular snapshot creation that is orders of magnitudes
faster than state-of-the-art approaches. Our experimental evalua-
tion on an HTAP workload based on TPC-C transactions and OLAP
queries show that our snapshotting mechanism is more than a fac-
tor of 100x faster than fork-based snapshotting and that the latency
of OLAP queries is up to a factor of 4x lower than MVCC in a single
execution engine. Besides, our approach enables a higher OLTP
throughput than all state-of-the-art methods.

CCS CONCEPTS

« Information systems — Main memory engines;

ACM Reference Format:

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Acceler-
ating Analytical Processing in MVCC using Fine-Granular High-Frequency
Virtual Snapshotting. In SIGMOD’18: 2018 International Conference on Man-
agement of Data, June 10-15, 2018, Houston, TX, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3183713.3196904

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4703-7/18/06.

https://doi.org/10.1145/3183713.3196904

1 INTRODUCTION
Realizing fast concurrent transactional processing is a desirable
but challenging design goal. A concurrency control technique is
required to fully utilize the massive amount of hardware paralleliza-
tion that is nowadays available even in commodity servers.
Interestingly, a large number of database systems, including
major players like PostgreSQL [18], Microsoft Hekaton [6], SAP
HANA [7], HyPer [16], MemSQL [1], MySQL [2], NuoDB [3], and
Peloton [4] currently implement a form of multi-version concur-
rency control (MVCC) [5, 14, 24] to manage their transactions. It
allows for a high degree of parallelism as readers do not block writ-
ers. The core principle is straightforward: if a tuple is updated, a
new physical version of this tuple is created and stored alongside
the old one in a version chain, such that the old version is still
available for readers that are still allowed to see the older version.
Timestamps ensure that transactions access only the most recent
version that existed when they entered the system.

1.1 Limitations of MVCC

In MVCC implementations that rely on a single execution engine,
all transactions, no matter whether they are short running OLTP
transactions or scan-heavy OLAP queries, are treated equally and
are executed on the same (versioned) database. While this form
of processing unifies the way of transaction management, it also
has unpleasant downsides under HTAP workloads: First and fore-
most, scan-heavy OLAP queries heavily suffer when they have to
deal with a large number of version chains [16]. During a scan,
version chains must be traversed to locate the most recent version
of each item that is visible to the transaction. It involves expensive
timestamp comparisons as well as random accesses when going
through the version chains. As column scans typically take signif-
icantly more time than short-running transactions, which touch
only a few entries, a large number of OLTP transactions can per-
form updates in parallel to create such version chains. Apart from
this, these version chains must be garbage collected from time to
time to remove versions that are not visible to any transaction
in the system. Garbage collection is typically done by a separate
thread, which frequently traverses these chains to locate and delete
outdated versions [12, 25, 26]. This thread has to be managed and
synchronized with the transaction processing, utilizing precious
system resources.

HTAP workload, consisting of transactions of inherently differ-
ent nature, does not fit the uniform processing in a single execution
engine, which treats all incoming transactions in the same way. Un-
fortunately, many state-of-the-art MVCC systems [1, 2, 4, 6, 16, 18]
implement some variant of such a processing model.

https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904

1.2 Hybrid Processing

But why exactly do these systems rely on such a processing model,
although it does not fit the faced workload? Why they do not
implement hybrid processing, which classifies queries based on the
type and executes them in separation?

To answer these questions, let us look at the development of the
prominent HyPer [10, 16] system. Early versions of HyPer imple-
mented hybrid processing [10, 15]: the queries were classified into
the categories OLTP and OLAP and consequently executed on sep-
arate representations of the database. The short running modifying
OLTP transactions were executed on the most recent version of the
data while long-running OLAP queries were outsourced to run on
snapshots. These snapshots were created from time to time on the
up-to-date version of the database.

While this concept mapped the mixed workload to the processing
system in a natural way, the developers faced a severe problem: the
creation of snapshots turned out to be too expensive [16]. To snap-
shot, HyPer utilized the fork system call. This system call creates a
child process that shares its virtual memory with the parent process.
Both processes perform copy-on-write to keep changes locally, thus
implementing virtual snapshotting. While this principle is cheaper
than physical snapshotting, which eagerly creates a deep copy of
the data, forking a process has a considerable overhead of replicat-
ing the entire virtual memory allocated by the parent process. Thus,
the developers decided to move away from hybrid processing to a
model with a single execution engine, relying entirely on MVCC in
their current version [16].

1.3 Challenges

Despite the challenges one has to face when implementing a hybrid
model, we believe it is the right choice. Matching the processing
system to the workload is crucial for performance. This is the goal
of our processing concept termed AnKer, which we will propose
in the following. Still, to do so, we have to discuss two problems:
(a) Obviously, MVCC is the state-of-the-art concurrency control
mechanism in main-memory systems. We intend to apply it as well
to parallelize transaction processing within our execution engines.
But how to combine state-of-the-art MVCC with a hybrid process-
ing model? (b) State-of-the-art snapshotting mechanisms are not
capable of powering a hybrid processing model. How to realize a
fast snapshotting mechanism, that allows the creation of snapshots
at a high frequency and with high flexibility?

2 BACKGROUND

Classical systems implement MVCC in a single execution engine,
where all queries are treated equally and executed on the same
versioned database. In contrast to that, AnKer extends the capabil-
ities of MVCC by reintroducing the concept of hybrid processing,
where incoming OLTP transactions and OLAP queries are treated
independently. By this, we can utilize the advantages of MVCC
while avoiding its downsides.

2.1 MVCC in Hybrid Processing

The concept of hybrid processing works as follows: based on the
classification, we separate the short-running OLTP transactions
from the long-running (read-only) OLAP queries. Conceptually, the
modifying OLTP transactions run concurrently on the most recent
version of the database and build up version chains as in classical
MVCC. In parallel, we outsource the read-only OLAP queries to

run on separate (read-only) snapshots of the versioned database.
These snapshots are created at a very high frequency to ensure
freshness. Thus, instead of dealing with a single representation of
the database that suffers from a large number of long version chains,
we maintain a most recent version in an OLTP execution engine
alongside with a set of snapshots, which are present in the OLAP
execution engine. Naturally, each of the representations contains
fewer and shorter version chains, which primarily reduces the main
problem described in Section 1.1. Apart from that, using snapshots
has the pleasant side-effect that the garbage collection of version
chains becomes extremely simple: We remove the version chains
automatically with the deletion of the corresponding snapshot if
it is not visible to any transaction in the system. Other systems
like PostgreSQL have to rely on a fine-granular garbage collection
mechanism for shortening the version-chains, requiring precious
resources. By using snapshotting, we can solve the problem of
complex garbage collection techniques implicitly.

2.2 High-Frequency Snapshotting

With the high-level design of the hybrid processing model at hand,
the question remains how to realize efficient snapshotting. The
approach stands and falls with the ability to generate snapshots at a
very high frequency to ensure that transactions running on the snap-
shots have to deal only with few and short version chains. In this
regard, previous approaches that relied on snapshotting suffered
under the expensive snapshot creation phase and consequently
moved away from snapshotting. As mentioned, early versions of
HyPer [10], which also used a hybrid processing model, created
virtual snapshots utilizing the system call fork. This call is used
to spawn child processes which share their entire virtual memory
with the parent process. The copy-on-write, which is carried out
by the operating system on the level of memory pages ensures that
changes remain local in the associated process. While this mecha-
nism naturally implements a form of snapshotting, process forking
is expensive. Thus, it is not an option for our case as we require a
more lightweight snapshotting mechanism.

In a recent publication on the rewiring [19] of virtual memory,
the authors also looked into the case of snapshot creation. With
rewiring, they can manipulate the mapping from virtual to physical
memory pages at runtime in userspace. In [19], the authors used this
technique to snapshot an existing virtual memory area v1, which
maps to a physical memory area p;, by manually establishing a
mapping of a new virtual memory area v, to p;. While this approach
is already significantly faster than using fork, it is still not optimal
as the mapping must be reconstructed using mmap page-wise n ithe
worst case — a costly process for large mappings.

Unfortunately, all the existing solutions are not sufficient for our
requirements on snapshot creation speed. Therefore, AnKer imple-
ments a more sophisticated form of virtual snapshotting. We do
not limit ourselves by using the given general purpose system calls.
Instead, we introduce our custom system call termed vm_snapshot
and integrate the concept of rewiring [19] directly into the Linux
kernel. Such a co-design of underlying system components and the
DBMS has been demonstrated successfully in recent publications
concerning both operating system [9, 13] and hardware [17, 21]
customizations, as it enables a whole new level of optimization
opportunities. Using our call, we can essentially snapshot arbitrary

virtual memory areas within a single process at any point in time.
The virtual snapshots share their physical memory until a write to
a virtual page happens which allows us to create snapshots with
a small memory footprint, allowing us to build them at a high
frequency without much memory overhead. Consequently, the in-
dividual snapshots contain few and short version chains and enable
efficient scans.

2.3 Structure & Contributions
Before we start with a detailed presentation of the system and the
individual components, let us outline the contributions we make:
(I) We present AnKer, a hybrid storage model that is able to ex-
ecute scan-heavy OLAP queries on a consistent snapshot while
processing short running transactions over the most recent ver-
sion of the database. We extend this model to redesign HyPer’s
MVCC engine [16] as an example, to show the benefits of a hy-
brid processing model over conventional MVCC implementations.
We also show that the changes to the original implementation are
minimal and can be easily adopted to other main-memory MVCC
systems [11, 20, 23].
(IT) We realize the snapshots in form of virtual snapshots and heavily
accelerate the snapshotting process by introducing a custom system
call termed vm_snapshot to the Linux kernel. This call directly ma-
nipulates the virtual memory subsystem of the OS and allows for a
significantly higher snapshotting frequency than state-of-the-art
techniques. We demonstrate the capabilities of vm_snapshot in a set
of micro-benchmarks and compare it against the existing physical
and virtual snapshotting methods.
(IIT) We create snapshots on the granularity of a column, instead
of snapshotting the entire table or database as a whole which is
possible due to the flexibility of our custom system call vm_snapshot.
Therefore, we can limit the snapshotting effort to those columns,
which are accessed by the transactions.
(IV) We create snapshots of versioned columns. To create a snapshot,
the current column as well as the timestamp information is virtually
snapshotted using our custom system call vm_snapshot, and the
current version chains are handed over. Running transactions can
still access all required versions from the fresh snapshot. As the
snapshot is read-only, all further updates happen to the up-to-date
column, creating new version chains. As a side-effect, we avoid any
expensive garbage collection as dropping an old snapshot drops all
old version chains with it.
(V) We perform an extensive experimental evaluation of AnKer.
We compare the hybrid processing model utilizing our system
call vm_snapshot with a fork-based snapshotting approach. Addi-
tionally, we compare the hybrid models with a single execution
engine under full serializability, snapshot isolation, and read un-
committed guarantees, executing mixed HTAP workloads based
on TPC-C transactions and configurable OLAP queries. Our pro-
totype implementation of the AnKer concept can be configured to
support both a hybrid and a single execution engine (by disabling
snapshotting) as well as the required isolation levels. We show that
our approach offers faster snapshotting, lower OLAP latency and
higher OLTP transaction throughput than the counterparts under
mixed workloads.

The paper has the following structure: In Section 3, we describe
the hybrid design of AnKer and motivate it with the problems of

state-of-the-art MVCC approaches. As the hybrid execution engine
requires a fast snapshotting mechanism, we discuss the currently
available snapshotting techniques to understand their strengths and
weaknesses in Section 4. In Section 5, we propose our snapshotting
method based on our custom system call vm_snapshot. Finally, in
Section 6, we evaluate AnKer in different configurations and show
the superiority of hybrid processing using vm_snapshot.

3 ANKER

As outlined, the central component of AnKer is a hybrid processing
model, which separates OLTP from OLAP processing using virtual
snapshotting. Both in the up-to-date representation of the data as
well as in the snapshots, we want to use MVCC as the concurrency
control mechanism. To understand our hybrid design, let us first
understand how MVCC works on a single execution engine.

3.1 Mechanisms of MVCC

To understand the mechanisms of MVCC, let us go through the
individual components. Initially, the data is unversioned and present
in the column. Thus, there does not exist any version chains. If a
transaction updates an entry, we first store the new value locally
inside the local memory of the transaction. Update are materialized
in the column when the actual commit happens. Before applying
the update to the in-place value, the system copies the old value
to the version chain using atomic compare-and-swap instructions.
We store the versions in a newest-to-oldest order. Other systems
as, e.g., HyPer [16] rely on this order as well, as it favors younger
transactions: they will find their version early on during the chain
traversal. A version chain can become arbitrarily long if frequent
updates to the same entry happen. Along with the version, we store
a unique timestamp of the update that created the version which
is necessary to ensure that the transactions that started before
the (committed) update happened, do not see the new version of
the entry but still the old one. Unfortunately, reading a versioned
column can become arbitrarily expensive since the chain must be
traversed using the comparison of timestamps to locate the proper
version. In summary, if a large number of lengthy version chains is
present and a transaction intends to read many entries, the version
chain traversal cost becomes significant.

Besides the way of versioning the data, the guaranteed isolation
level is an important aspect in MVCC. As a consequence of its
design, MVCC implements snapshot isolation guarantees by default.
During its lifetime, a transaction T sees the committed state of
the database, that was present at T’s start time. The updates of
newer transactions, which committed during T’s lifetime, are not
seen by T. Write-write conflicts are detected at commit time: if T
wants to write to an entry, to which a newer committed transaction
already wrote, T aborts. Still, under snapshot isolation, so-called
write-skew [8] anomalies are possible. Fortunately, MVCC can be
extended to support full serializability [16, 22]. To do so, we extend
the commit phase of a transaction with additional checks. If a
transaction T wants to commit, it validates its read-set by inspecting
if any other transaction, that committed during T’s lifetime changed
an entry in a way that would have influenced T’s result. If this is
the case, T has to abort as its execution was based on stale reads.
To perform the validation, we adopt the efficient approach applied
in HyPer [16], which is based on precision locking [24], a variant
of predicate locking. Essentially, the system tracks the predicate

ranges on which the transaction filtered the query result. During
validation, we check whether any write of any recently committed
transaction intersects with the predicate ranges. If an intersection
is identified, the transaction aborts.

3.2 Hybrid MVCC

To overcome the limitations of MVCC implementations mentioned
above, we realize a hybrid execution engine in AnKer. Two engines
are present side by side: one engine is responsible for the concurrent
processing of short-running transactions (termed OLTP execution
engine in the following), while the other one can perform long-
running read-only transactions in parallel (termed OLAP execution
engine from here on). Incoming transactions are marked as either
an OLTP transaction or an OLAP query and sent to the respective
engine for processing. The challenge is to combine the concept of
hybrid processing with MVCC. Let us look at the engines in detail
in the case of an example depicted in Figure 1. In the example, we
use the following set of operations:

wi(v) write to row i the given value v

ri) - v read from row i and return the read value as v
sum() = r sum up all column values and return the result as r
avg() > r average all column values and return the result as r

Step (D: For the following discussion, we assume that our table
consists of a single column C of 6 rows, identified by rows 0 to 5,
which all contain the value 0 in the beginning. This column C is
located in the OLTP execution engine and is the up-to-date repre-
sentation of the column. Since there are no snapshots present yet,
the OLAP execution engine virtually does not exist.

Step (2): Two OLTP transactions T; and T arrive and intend to
perform a set of writes. The first write ws(1) of T; intends to update
at row 5 the value 0 with the new value 1. However, instead of
replacing the old value in the column with the new value, we store
the new value locally inside the transaction T; and keep the column
untouched as long as the transaction does not commit. In the same
fashion, the remaining write w1(2) of 71 as well as the write w3(3)
of T are performed only locally inside their respective transactions.
Note that all three written values are uncommitted so far and are
visible to the transactions that completed the individual writes.
Step (3): Let us now assume that T; commits while T, intentionally
aborts. The commit of T} now replaces the old value 0 with the
new value 1 in column C at row 5. Of course, the old value 0 is
not discarded but stored in a newly created version chain for that
row. Similarly, at row 1 the old value 0 is replaced by the new
value 2, and the old value stored in the version chain. Note that we
implement a timestamp mechanism (logging both the start and end
time of a transactions commit phase) to ensure that both writes
of T1 become visible atomically to other transactions. As no other
transactions modified row 1 and 5 during the lifetime of Tj, the
commit succeeds and satisfies full serializability, that we guarantee
for all transactions. In contrast to that, the abort of T, discards
merely the local change of row 3. This strategy with no rollback
makes aborts cheap.

Step @): An OLAP query Q; arrives, which intends to scan and
sum up the values of all rows of the column, denoted by sum().
To execute Qq, first, a snapshot of column C is taken utilizing our
custom system call (which we described in Section 5 in detail),
resulting in a (virtual) duplicate of the column denoted as C’. It

OLTP

mmeHo
VLD‘D‘D‘D‘D‘D‘O :

~
value

ERY
o

ser ()

0
=
H)

Iommzaat

OLTP Transaction T1

w5 (1), Wp(2)

OLTP Transaction T2
w3(3)

local writes

ser (D

OLTP

C Version
[0] Chains

FRE

OLTP Transaction T1

OLTP Transaction T2

intentional abort X

0 ()

OLAP (read only)

‘Version
Chains

m»mmyc
[Helele]]e] o

Ho]

OLAP Query Q1

virtual snapshof

using system calls

t sum()

v ()

OLAP (read only)

OLTP

C Version
Chains

¢’ Version OLTP Transaction T3
0 Chains
° £,0=0, w,(4), w,(5)
2[0]
s o]
40 | OLAP Query Q1

=R

s (0

OLAP (read only)

OLTP

o (D

C Version ¢’ Version OLTP
‘1’ 77| Chains 00 | Chains Transaction T3
| R ==
0
3o 3[ao]
: 0 a0 OLAP Query Q1
[o] S sum()
OLAP (read only) Step @
C Version ' Version
O G0 Chains 0[] Chains
' 1[5
0 20
= s[ao)
0 40
ST s
"""" Virtual snapshot
OLAP Query Q1 using system calls OLAP Query Q2
()
OLAP (read only) OLTP Step
& Version o
Chains o[o]
1
2[o]
3
4 o]
5
OLAP Query Q1 OLAP Query Q2
()
delete OLAP (read only) oLTP Step
C Version ' Version | o < : >
0[] Chains o[0]
1] 2 oA 1
[o] 2[o]
3
4 o]
5

OLAP Query Q1

OLAP Query Q2

ave()

Figure 1: Hybrid processing in AnKer.

is essential to understand that this duplicate C’ will become the
most recent version of the column in the OLTP engine. The “old”
column C along with its build-up version chains is logically moved
to the OLAP engine and becomes read-only.

Step (5): Another OLTP transaction T arrives, that intends to per-
form a read r3() followed by the two writes w3(4) and w1(5). The
read r3() is performed by accessing the current value of row 3 of
the representation in the OLTP view, resulting in r3() — 0. The two
successive writes are stored locally inside T3 and are not visible for
other transactions. In parallel to the depicted operations of Ty, our
OLAP query Q1, which sums up the column values, starts executing
in the OLAP engine on C. As the snapshot is older than Qs it can
directly scan C without inspecting the version chains.

Step (6): While the scan of Qy is running, T3 decides to commit.
This commit does not conflict with the execution of Q; in any way,
as the Qp and T3 run in different execution engines. The local write
w3 (4) and wy(5) are materialized in C” after moving the old version
to version chain.

Step (7): Another OLAP query Q> arrives, which attempts to com-
pute the average of the column, denoted by avg() triggers the cre-
ation of a new snapshot. Again we use our system call and take a
snapshot of column C’ that is located in the OLTP engine, resulting
in a (virtual) duplicate of the column in form of C”’. The new dupli-
cate C”” becomes the most recent representation of the column in
the OLTP engine, while C” with its version chains re-labeled as the
OLAP engine. Note that both C” as well as C is now present in the
OLAP engine side by side, with Qs still running on C.

Step (8): The new OLAP query Q; starts running on the new snap-
shot C’, while the older OLAP query Q1 finishes its scan, returns
the sum 3 and commits.

Step (9): The finish of Q; makes C obsolete, as a newer represen-
tation C’ already exists and no transaction accessing C is running.
Thus, we can safely delete the oldest snapshot C.

3.2.1 Snapshot Synchronization. For simplicity, in the previous
example, all transactions worked solely on a single column. How-
ever, a database usually consists of several tables, containing a large
number of attributes and therefore, some form of snapshot syn-
chronization is necessary. In this context, snapshot synchronization
means that a transaction, which accesses multiple columns, has
to see all columns consistent concerning a single point in time.
The system could trivially snapshot all columns of all tables for
each request of the snapshot. However, this causes unnecessary
overhead as we might access only a small subset of the attributes.
Therefore, in AnKer, we implement a lazy snapshot materializa-
tion approach. The system logs the snapshot-timestamp along with
the list columns used by the snapshot for each snapshot request.
The actual snapshot materialization happens for each column if an
OLTP transaction or an OLAP query comes in, which accesses the
columns requested by the snapshot. This lazy strategy ensures that
columns, that are never used by OLAP queries or are never updated
by transactions are also never materialized in snapshots.

3.2.2 Snapshot Consistency. In the previous example, we created
a new snapshot for each OLAP query. When this happens, and the
previously described access triggers the actual materialization of
the snapshot using our system call, we have to ensure that no
other transactions modify the column while the snapshot is under
creation. We ensure this using a shared lock on the column, which

must be acquired by any transaction which performs an installation
of updates to the respective column during the commit phase. When
materializing a snapshot, an exclusive lock must be acquired. To
grant an exclusive lock, the system blocks all further requests for the
shared lock and the snapshot can be materialized once all already-
acquired shared locks are released.

4 STATE-OF-THE-ART SNAPSHOTTING

As stated before, our hybrid processing model stands and falls with
an efficient snapshot creation mechanism. Only if we can create
them at a high frequency without penalizing the system, we get up-
to-date snapshots with short version chains. There exist different
techniques to implement such a snapshotting mechanism, including
physical and virtual techniques. While the former ones create costly
physical copies of the entire memory, the latter ones lazily separate
snapshots only for modified memory pages. Let us now look at the
state-of-the-art techniques in detail to understand why they do not
suffice our needs and why we have to introduce an entirely new
snapshotting mechanism in AnKer.

4.1 Physical Snapshotting

The most simple approach is physical snapshotting, where a deep
physical copy of the database is created. On this physical copy,
the reading queries can then run in isolation, while the modifying
transactions update the original version. The granularity of snap-
shotting is an important design decision. It is possible to snapshot
the entire database, a table, or just a set of columns. This way of
snapshotting represents the eager way of doing it — at the time of
snapshot creation, the snapshot and the source are entirely sepa-
rated from each other. As a consequence, any modification to the
source is not carried through to the snapshot.

Physical snapshotting is straightforward and is easy to apply.
However, its effectiveness is directly bound to the amount of data
that is updated on the source. If only a portion of the data is up-
dated, the full physical separation of the snapshot and the source is
unnecessary and just adds overhead to the snapshotting cost.

4.2 Virtual Snapshotting

Virtual Snapshotting overcomes this problem by following the lazy
approach. The idea of virtual snapshotting is that initially the snap-
shot and the source are not separated physically. Instead, the separa-
tion happens lazily only for those memory pages that are modified.
As we will see, there are multiple ways to perform this separation
using virtual memory. To understand them, let us first go through
some of the high-level concepts of the virtual memory subsystem
of Linux (kernel 4.8).

4.2.1 Virtual vs Physical Memory. By default, the user perspec-
tive on memory is simple — only virtual memory is visible. To
allocate a consecutive virtual memory area b of size s the system
call mmap is used. For instance, the general purpose memory allocator
malloc from the GNU C library internally uses mmap to claim large
chunks of virtual memory from the operating system. The layer of
physical memory is completely hidden and transparently managed
by the operating system. After allocating the virtual memory area,
the user can start accessing the memory area, e.g., via b[i] = 42.
Apparently, the user perspective is relatively simple. He does not
have to distinguish between memory types at all. In comparison,
the kernel perspective is significantly more complicated.

b b+p-1] [b+p b+2-p-1] /b b+p-1] [b+p b+2-p-1]
3
‘E vpagen vpage; ‘ vpagen vpage;

map ()

mmap () mnap()

[0 ; p-1f Ip i 2pd] [0 SR /) i 2-pd]
: | |
3
é\ ppage;2 bpager ppage;2 ‘ ppager
&

Figure 2: Visualization of rewiring as shown in [19]. The
start address of the virtual memory area is denoted as b and
the page size as p. A consecutive virtual memory area of two
pages is mapped to a main-memory file, which is transpar-
ently mapped to two potentially scattered physical pages
(left part). The system call mmap can be used to manipulate
the mapping at runtime (right part).

First of all, the previously described call to mmap, which allocates
a consecutive virtual memory area, does not trigger the allocation
of physical memory right away. Instead, the call only creates a so-
called vm_area_struct (VMA), that contains all relevant information
to describe this virtual memory area. For instance, it stores that the
size of the area is s and that the start address is b. Thus, the set of all
VMAs of a process defines which areas of the virtual address space
are currently reserved. Note that a single VMA can describe a mem-
ory area spanning over multiple pages. As an example, in Figure 3
we visualize two VMAs. They describe the virtual memory areas
starting at address b (spanning over four pages) and ¢ (spanning
over three pages). In between the two memory areas is an unal-
located memory area of size two pages. Besides the VMAs, there
exists a page table within each process. A page table entry (PTE)
that contains the actual mapping from a single virtual to a physical
page is inserted after the first access to a virtual page, based on
the information stored in the corresponding VMA. The example
in Figure 3 shows the state of the page table after four accesses to
four different pages. As we can see, there is one PTE per accessed
page in the page table.

4.2.2 Fork-based Snapshotting. With the distinction between
the different memory types and the separation of VMAs and PTEs
in mind, we are now able to understand the most fundamental form
of virtual snapshotting: fork-based snapshotting [10]. It exploits the
system call fork, which creates a child process of the calling parent
process. This child process gets a copy of all VMAs and PTEs of
the parent. In particular, this means that after a fork, the allocated
virtual memory of the child and the parent share the same physical
memory. Only a write! to a page of child or parent triggers the
actual physical separation of that page in the two processes (called
copy-on-write or COW). This concept can be exploited to implement
a form of snapshotting. If the source resides in one process, one
can merely fork it to create a snapshot. Any modification to the
source in the parent process is not visible in the child process. As
mentioned in Section 1.2, early versions of HyPer that implemented
hybrid processing utilized fork.

4.2.3 Rewired Snapshotting. While fork-based snapshotting has
the convenient advantage, that the snapshotting mechanism is han-
dled by the operating system in a transparent manner, it has two

! Assuming the virtual memory area written to is private (MAP_PRIVATE).

significant disadvantages. First, it requires the spawning and man-
agement of several processes at a time. Second, it always snapshots
all allocated memory of the process, i.e., it cannot be used to snap-
shot a subset of the data. Both problems can be addressed using the
technique of rewiring as described in [19].

To understand rewiring, let us again look at the mapping from
virtual to physical memory as described in Section 4.2.1. This map-
ping is by default both hidden from the user as well as static, as
the user sees only virtual memory by default. The authors of [19]
manage to reintroduce physical memory to userspace in the form
of so-called main-memory files. A main-memory file has the same
properties as a file on disk, except that volatile main-memory in-
stead of disk pages back it. It can be mapped to a virtual memory
region using the system call mmap and accessed through it. As it is
possible to manipulate the mapping from virtual memory to the
main-memory files using mmap and main-memory files are internally
backed by physical memory; they can establish a transitive mapping
from virtual to physical memory. At any time, this mapping can
be modified using mmap. Using rewiring memory, it is possible to
establish a mapping that is both visible and modifiable in userspace.
To understand the concept, consider the example in Figure 2 from
the original paper [19] that swaps the content of two pages. On
the left side, two virtual memory pages of size p starting at vir-
tual address b are mapped to a main-memory file at offset 0. Since
the main-memory file is transparently backed by the two physi-
cal pages ppages2 and ppage, the mappings vpagey — ppages
and vpage; — ppagey have been established. Using mmap, it is now
easily possible perform the swapping by mapping vpagey to file
offset p and vpage; to file offset 0. This changes the physical pages
that are backing the virtual pages, resulting in a change of content.

In rewired snapshotting, the authors of [19] utilize this modi-
fiable mapping. Let us assume there is a virtual memory area b,
on which a snapshot should be created. To snapshot, the authors
simply allocate a new virtual memory area ¢ and mmap (or rewire)
it to the file, which represents the physical memory, in the same
way, as b. Consequently, b and c share the same physical pages.
If now a write to a page of b is happening, the separation of the
snapshot and original version must be performed manually on that
page, before the write can be carried out. In the first place, the write
must be detected. After detection, an unused page is claimed from
the file (which serves as the pool for free pages), the page content
is copied over, the write is performed, and b is rewired to map to
the new page. By this, it is possible to mimic the behavior of fork
while staying within a single process. Further, the technique offers
the flexibility of snapshotting only a fraction of the data. However,
rebuilding the mapping can also be quite expensive as we will see.

4.3 Reevaluating the State-of-the-Art

As we have discussed the different state-of-the-art methods of phys-
ical and virtual snapshotting that are present, let us now try to
understand their strengths and limitations. This analysis will point
us directly to the requirements we have on our custom system call,
that we will use in AnKer to power snapshotting. In the experiment
we are going to conduct in Section 4.3.2, we evaluate the time to
create a snapshot in the sense of establishing a separate view on
the data. While for physical snapshotting, this means creating a
deep physical copy of the data, for virtual snapshotting, it does not

[b i bipdffbip ;b+2-p-1]fbi2-p ; bs3 p-1] [b+3p ; big-p-1] [c i ctpdffetp g ct2p-dffet2-p ; et p-lf
VMA of b not allocated VMA of ¢ VMAs
valid valid valid valid
access access access access
happened happened happened happened
b — ppagen b+p— ppages b+8- p—> ppagens ctp — ppagect PTEs

Figure 3: Visualization of the relationship between VMAs and PTEs. The VMAs store the information about the currently
allocated virtual memory areas alongside with all necessary meta-information.

trigger any physical copy of the data. Still, virtual snapshotting
has to perform a certain amount of work as we will see. We will
perform the experiment as a stand-alone micro-benchmark to focus
entirely on the snapshotting costs and to avoid interference with
other components, that are present in our prototype of the AnKer
concept. We use a table with n = 50 columns, stored in a columnar
fashion, where each column has a size of 200MB. The question
remains which page size to use. To make snapshotting as efficient
as possible, we want to back our memory with pages as small as
available. This ensures that the overhead of copy-on-write on the
level of page granularity is minimal. Consider the case where our
200MB column is either backed by 100 huge pages or 51,200 small
pages. In the former case, 100 writes would cause a COW of the
entire column (200MB) in the worst case, resulting in a full physical
separation of the snapshotted column and the base column. In the
latter case, 100 writes would trigger COW of at most 100 small
pages (400KB), physically separating only 0.2% of the snapshotted
column from the base column.

4.3.1 System Setup. Before the start of the evaluation, let us
look at the setup. We perform all of the following experimental eval-
uations on a server consisting of two quad-core Intel Xeon E5-2407
running at 2.2 GHz. The CPU does neither support hyper-threading
nor turbo mode. The sizes of the L1 and L2 caches are 32KB and
256KB, respectively, whereas the shared L3 cache has a capacity
of 10MB. The processor can cache 64 entries in the fast first-level
data-TLB for virtual to physical 4KB page address translations. In a
slower second-level TLB, 512 translations can be stored. In total, the
system is equipped with 48GB of main memory, divided into two
NUMA regions of 24GB each. For the upcoming micro-benchmarks
of this Section, we deactivate one CPU and the attached NUMA
region to stay local on one socket. For the experimental evalua-
tion in Section 6, we use both sockets. The operating system is a
64-bit version of Debian 8.16 with our customized Linux kernel (ver-
sion 4.8.17), that has been extended with our vm_snapshot system
call. The codebase is written in C++ and compiled using g++ 6.3.0
with optimization level O3.

4.3.2 Creating a Snapshot. To simulate snapshotting on a subset
of the data, we create a snapshot on the first p columns of the table T
Let us precisely define how the individual snapshotting techniques
behave in this situation:

(a) Physical: to create a snapshot of p columns of table T, we
allocate a fresh virtual memory area S of size p - [pages, where [
denote the number of pages per column. Then, we copy the content
of p columns of T into S using memcpy. S represents the snapshot.

(b) Fork-based: to create a snapshot of p columns of table T, we
create a copy of the process containing table T using fork. Inde-
pendent of p, this snapshots the entire table. The first p columns of
table T’ contained in the child process represent the snapshot. The

virtual memory areas representing T and T’ are declared as private,
such that writes to one area are isolated from the other area.

(c) Rewiring: to create a snapshot of p columns of table T, we
first have to inspect by how many VMAs each column is actually
described. As a VMA describes the characteristic properties of a
consecutive virtual memory region, it is possible that a column is
represented by only a single VMA (best case), by one VMA per page
(worst case), or anything in between. The more writes happened to
a column and the more copy-on-writes were performed, the more
VMAs a column is backed by. Eventually, every page is described by
its individual VMA. To create the snapshot, we first allocate a fresh
virtual memory area S of size p - | pages, where I denote the number
of pages per column. For each VMA that is backing a portion of the
p columns in T, we now rewire the corresponding part of S to the
same file offset. Additionally, we use the system call mprotect to set
the protection of S to read-only. This is necessary to detect the first
write to a page to perform a manual copy-on-write. S represents
the snapshot.

Table 1: Creating a snapshot using state-of-the-art tech-
niques. We vary the number of columns on which we snap-
shot. For rewiring, the number of modified pages influences
the runtime. Thus, we show the snapshotting cost after 0,
500, 5000, and 50000 pages were modified per column.

Pages Modified 1Col 25 Col 50 Col
Method

per Column [ms] [ms] [ms]
Physical - 108.09 2693.69 5382.87
Fork-based - 108.28 108.28 108.28
Rewiring 0 0.02 0.39 7.72
Rewiring 500 1.22 30.90 61.87
Rewiring 5000 14.17 352.15 712.96
Rewiring 50000 169.28 4210.17 8459.67

Table 1 shows the results. We vary the number of columns to snap-
shot p from 1 column (2% of the table) over 25 columns (50% of the
table) to 50 columns (100% of the table) and show the runtime in ms
to create the snapshot. For rewiring, we vary the pages that have
been modified (by writing the first 8B of the page) before the snap-
shot is taken, as it influences the runtime. We test the case where no
write has happened, and a single VMA backs each column. Further,
we measure the snapshotting cost after 500 pages, 5000 pages, and
50000 pages have been modified. These number of writes lead to
995, 9483, and 51177 number of VMAs backing a column. First of
all, we can see that physical snapshotting is quite expensive, as it
creates a deep copy of the columns already at snapshot creation
time. As expected, we can observe a linearly increasing cost with
the number of columns to snapshot. In contrast to that, fork-based
snapshotting is independent of the number of requested columns,
as it snapshots the entire process with the whole table in any case.

When snapshotting 50% of the table, fork-based snapshotting is
over an order of magnitude faster than physical snapshotting, as it
duplicates solely the virtual memory, consisting of the VMAs and
the page table. The runtime of rewiring is highly influenced by the
number of written pages, respectively the number of VMAs per
column. The more VMAs we have to touch to create the snapshot,
the higher the runtime. If we have as many VMAs as pages (the
case after 50000 writes), the runtime of rewiring is higher than the
one of physical snapshotting. However, we can also see rewiring
is significantly faster than the remaining methods if fewer VMAs
need to be copied. For instance, after 500 writes, rewiring is around
two orders of magnitude faster for a single column and almost
factor two faster for snapshotting the entire table.

4.3.3 Summary of Limitations. The performance of rewiring for
snapshot creation is highly influenced by the number of VMAs per
column. For every VMA, a separate mmap call must be carried out
— a significant cost if the number of VMAs is large. Unfortunately,
when using rewiring, an increase in the amount of VMAs over time
is not avoidable.

Still, we believe in rewiring for efficient snapshotting. However, it
can not show its full potential. If we carefully inspect the description
of rewired snapshotting in Section 4.3.2 again, we can observe that
rewiring implements a workaround of the limitations of the OS. We
are forced to manually rewire the virtual memory areas described
by the VMAs to create a snapshot — because there is no way to copy
a virtual memory area. We have to perform another pass over the
source VMAs to set the protection using the system call mprotect to
read-only — instead of setting it directly when copying the virtual
memory area. It is also expensive to keep track of shared physical
pages in the presence of multiple snapshots.

Naturally, rewiring hits the limits of the vanilla kernel. Therefore,
in the following Section, we will propose a custom system call that
tackles these limitations — leading to a much more straight-forward
and efficient implementation of virtual snapshotting, which we will
finally use in AnKer.

5 SYSTEM CALL VM_SNAPSHOT

In the previous section, we have seen the limitations of the state-
of-the-art kernel. Let us now discuss how we can overcome them
by introducing our custom system call vm_snapshot. In our imple-
mentation of rewired snapshotting, we have experienced the need
to snapshot virtual memory areas directly. By default, the kernel
does not support this task. As a workaround, we had to rewire a
new virtual memory area in the same way as the source area which
is a costly process as it involves repetitive calls to mmap.

5.1 Semantics
To solve this problem, we have to introduce a new system call,
that will be the core of our snapshotting mechanism. Before, let us
precisely define what snapshotting a virtual memory area means in
this context. Let us assume we have a mapping from n virtual to
n physical pages starting at virtual address b. The first virtual page
covering the virtual address space [b; b+ p — 1] (vpagep,) is mapped
to the physical page ppagesz. The second virtual page covering
virtual address space [b + p; b + 2 - p — 1] (vpagep,) is mapped to
another physical page ppage; and so on.

Now, we want to create a new virtual memory area starting at
a virtual address c, that maps to the same physical pages. Thus,

the virtual page covering [c; ¢ + p — 1] should map to ppages, the
virtual page [c¢ + p; ¢ + 2 - p — 1] should map to ppage; and so on.
We define the following system call to encapsulate the described
semantics:

void*x vm_snapshot(void* src_addr, size_t length);

This system call takes the src_addr of the virtual memory area
to snapshot and the length of the area in bytes. Both src_addr
and length must be page aligned. It returns the address of a new
virtual memory area of size length, that is a snapshot of the virtual
memory area starting at src_addr. The new memory area uses the
same update semantics as the source memory area, i.e., if the virtual
memory area at src_addr has been declared using MAP_PRIVATE |
MAP_ANONYMOUS, the new memory area is declared in the same way.
Besides, the new memory area follows the same NUMA allocation
policy as any virtual memory of the system - by default, the physical
page serving a COW is allocated on the NUMA region of the socket,
that executes the thread causing the COW.

5.2 Implementation

Implementing a system call that modifies the virtual memory sub-
system of Linux is a delicate challenge. In the following, we will
provide a high-level description of the system call behavior. For
the interested reader, we provide a more detailed discussion in
Appendix A. On a high level, vm_snapshot internally performs
the following steps: (1) Identify all VMAs that describe the vir-
tual memory area [src_addr, src_addr + length — 1]. (2) Reserve
a new virtual memory area of size length starting at virtual ad-
dress dst_addr. (3) Copy all of the previously identified VMAs and
update them to describe the corresponding portions of virtual mem-
ory in [dst_addr, dst_addr + length — 1]. (4) For each VMA which
describes a private mapping (which is the standard case in AnKer),
additionally copy all existing PTEs and update them to map the
corresponding virtual pages in [dst_addr, dst_addr + length — 1].
This system call vm_snapshot will form the core component of cre-
ating snapshots on columns in AnKer. It is the call that we use in
Figure 1 in Step (4 and Step (7).

5.3 Evaluation

Let us now see how our custom system call vm_snapshot performs
in comparison with its direct competitor rewiring. We excluded the
baseline of physical snapshotting, as it is already out of consider-
ation for AnKer due to high cost and low flexibility. We first look
at the snapshot creation time for a single column of 200MB. The
previous experiment presented in Table 1 showed that rewiring is
profoundly influenced by the number of VMAs that are backing
the column to snapshot. To analyze this behavior in comparison
with vm_snapshot, we run the following experiment: for each of
the 51,200 pages of the column, we perform precisely one write to
the first 8B of the page. In the case of rewiring, this write triggers
the COW of the touched page and thus, creates a separate VMA
describing it. After each write, we create a new snapshot of the
column and report the creation time.

In Figure 4(a), as predicted, the snapshot creation cost of rewiring
is highly influenced by the number of VMAs that is increasing with
every modified page. To visualize this correlation, we plot the num-
ber of VMASs per column for rewiring alongside with the snapshot
creation time. In contrast to rewiring, our system call vm_snapshot
shows both a stable and low runtime over the entire sequence of

writes. After only around 1000 writes have happened (see zoom-
in of Figure 4(a)), the snapshotting cost of vm_snapshot already
becomes lower than the one of rewiring. After all 51,200 writes
have been carried out, vm_snapshot is 68x faster than rewiring. This
shows the tremendous effect of avoiding repetitive calls to mmap.

200

T 60
fork()

rewiring *
180 vm_snapshot

VMAs / Column (rewiring) ~ +

50

40

30

©
S
T
N

Snapshot creation time (ms)
=]
3
T
|

o
3
T

Number of VMAs backing the column (x103)

40 + 2
410
20 0 0
0 0
[100 200 300 400 500

Number of pages written to (x102)
(a) Comparison of snapshot creation times. The time to snapshot a single

column is shown on the left y-axis for rewiring respectively vm_snapshot. To
enhance the visualization, we also show a zoom-in.

25

T 60
rewiring ¥
vm_snapshot
#VMAs / Column (rewiring) ~ +

n
S3

o

=)

3

Time to update 8 bytes in a random page (usec)
Number of VMAs backing the column (x103)

4 I Y
0 100 200 300 400 500
Number of pages written to (x102)

(b) Comparison of writes to the snapshotted column. On the left y-axis, the
time to perform a write of 8B is shown.

Figure 4: Comparison of vim_snapshot and rewiring in terms
of snapshotting and write cost. After every write to a page,
a new snapshot is taken. Additionally, we show the number
of VMAs per column for rewiring on the right y-axis.

However, we should also look at the actual cost of writing the
virtual memory. In the case of rewiring, the triggered COW is han-
dled by copying the page content to an unused page and rewiring
that page into the column. In the case of vm_snapshot, which works
on anonymous memory and relies on the COW mechanism of the
operating system, no manual handling is necessary. This becomes
visible in the runtime shown in Figure 4(b). Writing a page of the
column snapshotted by vm_snapshot is up to 6x faster than writing
to one created by rewiring, as the operating system handles the
entire COW. No protection must be set manually, and no signal
handler is necessary to detect the write to a page.

6 EXPERIMENTAL EVALUATION

After the description of the processing concept of AnKer and the
introduction of vm_snapshot to efficiently snapshot virtual memory
areas, let us now start with the experimental evaluation of the actual
system. As AnKer relies on a hybrid processing model, we want to
test it against MVCC using a single execution engine. Additionally,
we want to test its snapshotting capabilities against fork-based
snapshotting. Our prototype is designed in a way also to support
both hybrid processing using fork as well as MVCC using a single
execution engine by disabling snapshotting.

6.1 System Configurations

Let us define the precise configurations we are going to evaluate:
(1) MVCC in a Single Execution Engine, Full Serializability
(abbreviated by SEE_FS). We configure our prototype such that
no snapshots are taken at all. Thus, there is only a single execution
engine with the most recent representation of the database. Both
OLTP transactions and OLAP queries run on this execution engine
under full serializability guarantees. A separate garbage collection
mechanism cleans the version chains created by the updates. The
system uses a thread that passes over the version chains every sec-
ond and deletes all versions that are not visible to the oldest active
transaction in the system. To speed up scanning over versioned
data, we apply an optimization technique introduced by [16]: for
every 1024 rows, we keep the position of the first and the last ver-
sioned row. With this information, it is possible to scan in tight
loops between versioned records without performing any checks.
(2) MVCC in a Single Execution Engine, Snapshot Isolation
(abbreviated by SEE_SI). As in (1), no snapshots are taken. There is
only a single execution engine with the most recent representation
of the database. Both OLTP transactions and OLAP queries run in
this component under snapshot isolation guarantees and thus, no
read set validation is performed. The same garbage collection and
scan optimization as in (1) are applied.

(3) MVCC in a Single Execution Engine, Read Uncommitted
(abbreviated by SEE_RU). As in (1) and (2), no snapshots are taken.
There is only a single execution engine with the most recent rep-
resentation of the database. Both OLTP transactions and OLAP
queries run in this component under read uncommitted guaran-
tees and thus, running transactions/queries can see uncommitted
changes. Not garbage collection is necessary since updates do not
create versions. Scan optimization is not necessary as well.

(4) MVCC in a Hybrid Execution Engine using vm_snapshot,
Full Serializability (abbreviated by HEE_AnKer). The OLTP
transactions run in the OLTP execution engine, and the OLAP
queries run in the OLAP execution engine. The creation of snap-
shots works in a lazy fashion using our system call vm_snapshot as
described in Section 3.2.1. We additionally force the transactions,
that are classified as OLTP to abort, as soon as they are forced to
find the right tuple version from the version chain. This prevents
these transactions from doing unnecessary work before they abort.
(5) MVCC in a Hybrid Execution Engine using fork, Full Se-
rializability (abbreviated by HEE_fork). Same as (4), except
that we use fork to perform the virtual snapshotting instead of
vm_snapshot. A call to fork launches a new process of AnKer that
runs the OLAP queries. To create a consistent snapshot, HEE_fork
blocks all commits until the fork is complete. This can be replaced

with log-based rollback similar to HyPer[10] to improve the OLTP
throughput, but it adds additional cost to snapshot preparation.

6.2 Experimental Setup
To evaluate the system under a complex HTAP workload, we define
the following mixture of OLTP transactions and OLAP queries:

On the OLTP side, we use three transactions from the TPC-C
benchmark: Payment, NewOrder, and OrderStat. These three trans-
actions access all nine tables of the TPC-C database and perform
updates on the tables stock, order_line, orders, new_order, and
district. For each transaction that is submitted to the system, we
pick the configuration parameters randomly within the bounds
given in the TPC-C specification. We populate the database with
40 warehouses. We support two different types of access pattern
for the transactions. For the first one, the accesses are uniformly
distributed across warehouses and districts. For the second one, 50%
of the accesses are skewed towards five given warehouse/district
pairs. The remaining 50% follow a uniform distribution.

On the side of OLAP, we use eight synthetic queries, which are
dominated by scanning, grouping, and aggregation. Figure 5 shows
the precise queries. We pick the query StockScan (OLAP-Q1) as
described in [25], which operates on the warehouse and stock tables.
Further, we add the two single-table queries OLAP-Q2 and OLAP-
Q3, which group and aggregate on order_line. To have scan-heavy
queries, we add OLAP-Q4 and OLAP-Q5, which simply perform
full table scans on orders respectively new_order. Finally, we add
the three fast queries OLAP-Q6, OLAP-Q7, and OLAP-Q8, which
perform scans and aggregations on the columns of a single table.

Unless mentioned otherwise, the upcoming experiments use
6 threads to process the stream of incoming OLTP transactions and
2 threads to answer OLAP queries.

OLAP-Q1 StockScan [25] OLAP-Q2 OLAP_Q3

select w_id, count(*)
from warehouse, stock
where w_id = s_w_id
group by w_id;

select ol_d_id,
avg(ol_amount)
from order_line
group by ol d_id;

select ol_w_id,
sum(ol_quantity),
avg(ol_amount)

from order_line
group by ol _w_id;

OLAP-Q4 FULL TABLE SCAN OLAP-Q5 FULL TABLE SCAN

select *
from new_order;

select *
from orders;

OLAP Q6 COLUMN SCAN OLAP Q7 COLUMN SCAN OLAP Q8 COLUMN SCAN

select avg(d_tax),
avg(d_ytd)
from district;

select avg(ol_amount)
from order_line;

select avg(s_quantity)
from stock;

Figure 5: The eight OLAP queries we use in the evaluation.
6.3 Snapshotting Cost and OLAP Latency

Let us start with an evaluation of the core mechanism of AnKer:
the fast snapshotting using our system call vm_snapshot. Our ini-
tial motivation of this project was to enable virtual snapshotting
without the overhead of fork-based snapshotting. Thus, let us now
first see how hybrid processing using our system call (HEE_AnKer)
competes with hybrid processing using fork as originally done by
HyPer (HEE_fork). Both run under full serializability guarantees.
Additionally, we compare the two hybrid approaches with MVCC
using a single execution engine under three different isolation levels
(SEE_FS, SEE_SI, SEE_RU).

In the following experiment, we will answer two questions: First,
how expensive is the snapshotting mechanism using our system
call in comparison with the alternatives under a real-world HTAP
workload? Second, what is the impact of the snapshotting mecha-
nism and the hybrid processing under MVCC on the latency of the

OLAP queries? To answer these questions, we perform the follow-
ing experiment: To sustain the system, we fire an infinite stream of
OLTP transactions randomly picked from the set of TPC-C transac-
tions. After five seconds, we fire a random OLAP query from the set
depicted in Figure 5 and repeat firing random OLAP queries every
500ms. For every fired query, we create a new snapshot for the
hybrid approaches HEE_AnKer and HEE_fork. After three minutes,
we terminate the experiment and report the average of all observed
snapshotting times and query latencies.

1192
1181
1839
1847
2244
2238
1724
1722
1556
1542

1000 Latency of OLAP query

Snapshot Creation

800

600

HEE_ AnKer
HEE_ fork
SEE_FS
SEE_SI
SEE_RU

Time [ms]

400

200

QL Q2 Q3 Q4 Qs Q6 Q7 Q8
OLAP Queries

(a) System sustained using OLTP transactions with uniform access pattern.

1462
1471

1000

800

600

Time [ms]

400

200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
OLAP Queries
(b) System sustained using OLTP transactions with skewed access pattern.

Figure 6: Snapshotting Cost and Latency of OLAP queries.

Figure 6 shows the results grouped by the OLAP queries. In
Figure 6(a), we use the OLTP workload with a uniform access
pattern while in Figure 6(b), we use the skewed OLTP workload
focusing on five hot warehouse/district combinations. For each of
the eight OLAP queries, we report the snapshot creation time as
well as the latency in ms for each of the five tested methods.

Let us first have a look at the results on the uniform pattern
in Figure 6(a). If we compare the baselines, we can see the sig-
nificant cost of the snapshotting phase in HEE_fork, caused by
replicating the process, followed by a fast query answering part.
The approaches SEE_FS and SEE_SI using a single execution engine
do not have an explicit snapshot creation phase but suffer from
very high query execution times of up to 2200ms for Q3 (cut off
at 1000ms in the plot), as the OLAP query has to work its way
through the version chains, which are build up by the OLTP stream.
In comparison to the baselines, HEE_AnKer combines the best of

both worlds: its snapshot creation time is so short that it is not
even visible in the plots. This is caused by the fact that it snapshots
only the columns that are touched by the respective query using
vm_snapshot. In comparison to HEE_fork, the snapshotting phase
of HEE_AnKer is more than 100x faster. After snapshotting, the
actual query answering part is equally fast as for HEE_fork. We
want to point out that the total latency for HEE_AnKer (including
snapshot creation and query answering) under full serializability
guarantees almost equals the runtime of SEE_RU, which runs only
on the isolation level of read-uncommitted. We can also observe
that depending on the query, the expensive snapshotting phase
of HEE_fork can have a drastic impact on the overall latency. For
Q¢, Q7, and Qs, the snapshotting cost of HEE_fork dominates the
latency, and HEE_AnKer achieves a speedup of 4.9x to 7.5x.

If we look at the results on the skewed pattern in Figure 6(b), we
can observe that especially the approaches using a single execution
engine and a higher isolation level (SEE_FS and SEE_SI) massively
benefit from the skew. We can also see that for the three faster
queries Qs, Q7, and Qg, HEE_fork shows now the overall highest
latency: the snapshotting mechanism using fork is more expensive
than the query answering part of any competitor.

6.4 Transaction Throughput
After inspecting the snapshotting cost and the latency of the OLAP
queries, let us now investigate the previous experiment from Sec-
tion 6.3 from the OLTP side. As we fire an infinite stream of OLTP
transactions over a time interval of three minutes, we plot the OLTP
throughput achieved per second. As before, starting after five sec-
onds, we fire a random OLAP query every 500ms and snapshot
before every OLAP query for the hybrid methods. We exclude the
results for SEE_RU, as the OLTP throughput is extremely high in
comparison to the counterparts with higher isolation levels.
Figure 7 shows the results for the uniform OLTP access pattern
(Figure 7(a)) and the skewed OLTP access pattern (Figure 7(b)). For
the uniform case, in the first five seconds, no OLAP query is run-
ning, and we see the maximum OLTP throughput of the system
which locates between 60k and 70k transactions per second. As
soon as the first OLAP query arrives, the throughput significantly
drops for all methods due to congestion. As expected, we observe
the lowest throughput of around 28k transactions per second under
SSE_FS because of the expensive commit phase validation that is
performed, and a slightly higher throughput of around 30k to 38k
transactions per second for HEE_fork. The costly snapshotting uti-
lizing fork heavily throttles the OLTP throughput. The throughput
of SEE_SI is very stable around 42k transactions per second. To our
surprise, this is a lower throughput than the average throughput
achieved by HEE_AnKer with 47k transactions per second which
has one major reason: Before SEE_SI successfully reads a value that
is stored in a column, it must validate whether the value is versioned
or not. If it is versioned, it reads the timestamp of the most recent
version and the pointer to the version chain. The read is successful
if the current timestamp of the tuple is smaller than transaction’s
begin-timestamp. If not, the version chain is traversed to find the
valid version. However, for the HEE_AnKer this is not the case.
Since we only support full-serializability, the OLTP transactions
are not allowed to read from the version chains. For every read, the
transaction only reads the timestamp of the current tuple version.

70 —— : . .
HEE_AnKer +
&+ HEE_fork x

60 -

50 | .

X x
x X
x 20 X, K5 e 3
30 -);g;% g ke Xzsf“& ﬁ(&&;&; *&wx o g *&WMW*&

20

OLTP Throughput [x1000 transactions/sec]

0 L L L L L L L L
0 20 40 60 80 100 120 140 160 180

Time [sec]

(a) Throughput of OLTP Transactions with uniform access pattern.

50 T
HEE_AnKer

for HEE_fork x 4
¥ SEE_FS
+ SEE_SI

®

I
S
T

x

@
S
T

.
+ " . N
+ + 4 s
R TR PP S Y b g iy
L e e e et re B e
At S B sttt T FE 4 b e S T e
et e, 7 fhifeg T #

L% WMWWMW%W ST, -

N
=3

OLTP Throughput [x1000 transactions/sec]

=)
T

0
0 20 40 60 80 100 120 140 160 180
Time [sec]

(b) Throughput of OLTP Transactions with skewed access pattern.

Figure 7: Throughput of OLTP Transactions.

If the timestamp is smaller than transaction’s begin-timestamp, the
transaction can read the value. Otherwise, it prematurely aborts
without doing the read. Due to fewer comparisons and metadata
validation, a single read access for full-serializable OLTP transac-
tion is faster than the reads performed by SI based protocol where
the transaction can still commit after reading from the version
chain. For HEE_AnKer, we observe a high variance in the through-
put which is due to different snapshot creation time for different
OLAP queries and the copy-on-write cost. We also observe a stable
behaviour for HEE_Fork due to relatively stable fork cost.

For the skewed distribution in Figure 7(b), we see a lower
throughput than for the uniform pattern across all methods. This is
caused by update conflicts that must be serialized for the contended
transactions. We can also observe in this plot that the variance for
HEE_AnKer and HEE_fork is smaller than in the uniform case since
fewer copy-on-writes are performed.

6.5 Scaling
Our system essentially implements parallelism on two layers: On
the first layer, we parallelize OLTP and OLAP execution by main-
taining a hybrid execution engine. On the second layer, we apply
MVCC inside each engine to ensure a high concurrency among
transactions of a single type. In this regard, let us now investigate
how well AnKer scales with the number of OLTP and OLAP streams,
that are used to process the transactions and queries.

In Figure 8, we investigate the scaling capabilities along two
dimensions. On the first dimension, we fix the number of OLAP

100

o W HEE AnKer M HEE fork M HEE_AnKer M HEE_fork M HEE AnKer M HEE fork
W SEE_FS SEE_SI M SEE_FS SEE_SI W SEE_FS SEE_SI
B SEE RU B W SEE_RU 2

1200

2 8

w
Q6 Latency (without snapshotting) [ms]

Q1 Latency (without snapshotting) [ms]

°

1 2 3 4 5 6 1 2
OLTP Streams

3

OLTP Streams

OLTP Throughput [x1000 transactions/sec]

Il

OLAP Streams

4 5 6

(a) Latency for Q1 while varying the number of (b) Latency for Q6 while varying the number of (c) OLTP Throughput while varying the number of

OLTP streams. The number of OLAP streams is 2.

OLTP streams. The number of OLAP streams is 2.

OLAP streams. The number of OLTP streams is 2.

Figure 8: Varying the number of streams used for processing.

streams and vary the number of available OLTP streams. On the
second dimension, we fix the number of OLTP streams and vary the
number of available OLAP streams. The experimental setup is the
same as in Section 6.3 and Section 6.4. In Figure 8(a) and Figure 8(b),
we report the latency of the OLAP queries Q7 and Qs when fixing
the number of OLAP streams to 2 and varying the number of OLTP
streams from 1 to 6 to sustain the system with varying OLTP load.
In Figure 8(c), we fix the OLTP streams to 2 and vary the number of
OLAP streams from 1 to 6. Here, we show the average throughput
over the run of 180 seconds.

From Figure 8(a) and Figure 8(b), we can see that the hybrid

approaches are largely unaffected by the number of OLTP streams.
The reason for this is that the OLAP processing happens in isola-
tion to the version chain building, that is happening in the OLTP
execution engine. In contrast to that, the OLAP latency of SEE_FS
and SEE_SI heavily decreases with an increase in OLTP streams, as
more OLTP streams build up more version chains that must be tra-
versed by an OLAP query. SEE_RU is again unaffected, as it simply
reads the in-place version without traversing the version chains at
all. In Figure 8(c), we can see that the OLTP throughput decreases
for all methods with an increase of OLAP streams. However, some
methods are more affected than others. While the throughput of
HEE_AnKer decreases only by 11.6% from 1 to 6 OLAP streams, the
throughput of HEE_fork decreases by 67.6%. This is because the ex-
pensive snapshotting phase using fork interrupts the processing of
the OLTP stream for a significant amount of time and decreases the
number of OLTP transactions that can be processed in 180 seconds.
Consequently, the effective throughput is decreased.
Table 2: Varying the number of warehouses and observing
the throughput decrease. The throughput is given in trans-
actions per second. The last column shows the slowdown in
throughput from 1 warehouse to 40 warehouses.

Method 1 10 20 30 40 Slowdown
WH | WH | WH | WH | WH | 1TWH—40WH
HEE_AnKer || 51289 | 50525 | 49718 | 48637 | 47729 1.07x
HEE_fork 46391 | 42741 | 39172 | 35678 | 31220 1.49x
SEE_FS 32456 | 31810 | 31281 | 30299 | 28794 1.18x
SEE_SI 48391 | 48027 | 47687 | 47033 | 46237 1.05x

Finally, let us vary the size of the used dataset and see the effect
on the OLTP throughput. Additionally to 40 warehouses, that we
used in the previous experiments, we also evaluate 1, 10, 20, and
30 warehouses in the following and report the slowdown in through-
put when increasing the size from 1 to 40 warehouses. As expected,
HEE_fork is affected the most by an increase of the dataset size

with a throughput slowdown of factor 1.49x, as the process to fork
heavily increases in size. For HEE_AnKer, the problem is not that
severe as only the touched columns are snapshotted.

7 FUTURE WORK

Our system call vm_snapshot is the essential component that pow-
ers the hybrid execution engine of AnKer. It enables fast and fine-
granular snapshotting in combination with a low memory footprint.
Nevertheless, due to its flexibility and general design, it could be
applied in a variety of other situations as well. From a more gen-
eral perspective, vm_snapshot can essentially replace any larger
memcpy operation. While memcpy duplicates all pages in a mem-
ory region in an eager fashion, vm_snapshot lazily duplicates only
the modified pages. As memcpy is frequently used at essentially all
levels of any software system, such a simple function swap can have
a significant impact on performance. From a system perspective,
the problem of efficient snapshotting is not limited to relational
systems. For instance, graph processing systems throttle in the
presence of concurrent updates and analytics. Our system call could
be used to snapshot (parts of) the graph and outsource the ana-
lytics as in AnKer. Apart from snapshotting, there is the related
concept of checkpointing [24], where a consistent view of the
database has to be stored to disk for recovery purposes. As this is
more of a background task with respect to the query processing, it
should be as transparent and lightweight as possible. We can ensure
this with our system call: if a checkpoint is requested, we create
a consistent view of the database using vm_snapshot with minimal
effort. Afterwards, this view can be spilled to disk asynchronously.
Consequently, a system, which supports the creation of snapshots
and checkpoints at a high frequency, could be easily extended to
run time travel queries efficiently: they would either run on snap-
shots, which are still available in the system, or on checkpoints,
that are reloaded via mmap.

8 CONCLUSION

In this work, we introduced AnKer, a transactional processing con-
cept implementing a hybrid execution engine in combination with
MVCC, which works hand in hand with our customized Linux
kernel to enable snapshotting at a very high frequency. We have
shown that a hybrid design powered by a lightweight snapshotting
mechanism fits naturally to the HTAP workloads and improves the
throughput of OLAP queries by factors up to 4x, as it enables fast
scans in tight loops. Besides, due to the flexibility of our custom sys-
tem call vm_snapshot, we can limit the snapshotting effort to those
columns that are accessed by transactions, allowing a snapshotting
speedup of more than factor 100x over fork-based snapshotting.

REFERENCES

[7

[

8

=

2017. MemSQL. (10 2017). http://www.memsgl.com

2017. MySQL. (10 2017). http://www.mysgl.com

2017. NuoDB: http://www.nuodb.com. (10 2017). http://www.nuodb.com
2017. Peloton: http://www.pelotondb.org. (10 2017). http://www.pelotondb.org
Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley. http://research.
microsoft.com/en-us/people/philbe/ccontrol.aspx

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD 2013, New York, NY, USA, June
22-27, 2013. 1243-1254. https://doi.org/10.1145/2463676.2463710

Franz Farber, Sang Kyun Cha, Jirgen Primsch, Christof Bornhovd, Stefan Sigg,
and Wolfgang Lehner. 2011. SAP HANA database: data management for modern
business applications. SIGMOD Record 40, 4 (2011), 45-51. https://doi.org/10.
1145/2094114.2094126

Alan Fekete, Elizabeth J. O’Neil, and Patrick E. O’Neil. 2004. A Read-Only
Transaction Anomaly Under Snapshot Isolation. SIGMOD Record 33, 3 (2004),
12-14. https://doi.org/10.1145/1031570.1031573

[9] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Rosco. 2016. Cus-

[10]

[11]

[12]

(13

[14]

[15]

[16

[17]

[18]

[19

[20

[21

[22

[23]

[24

[25

[26]

tomized OS Support for Data-processing. In DaMon’ 16. ACM, New York, NY,
USA, Article 2, 6 pages. https://doi.org/10.1145/2933349.2933351

A. Kemper and T. Neumann. 2011. HyPer: A hybrid OLTP & OLAP main memory
database system based on virtual memory snapshots. In ICDE 2011. 195-206.
https://doi.org/10.1109/ICDE.2011.5767867

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 1675-1687.
https://doi.org/10.1145/2882903.2882905

Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298-309.

Qingzhong Meng, Xuan Zhou, Shiping Chen, and Shan Wang. 2016. SwingDB: An
Embedded In-memory DBMS Enabling Instant Snapshot Sharing. In ADMS/IMDM
Workshop 2016. 134-149. https://doi.org/10.1007/978-3-319-56111-0_8

C. Mohan, Hamid Pirahesh, and Raymond A. Lorie. 1992. Efficient and Flexible
Methods for Transient Versioning of Records to Avoid Locking by Read-Only
Transactions. In SIGMOD 1992. 124-133. https://doi.org/10.1145/130283.130306
Henrik Miihe, Alfons Kemper, and Thomas Neumann. 2011. How to efficiently
snapshot transactional data: hardware or software controlled?. In DaMoN 2011,
Athens, Greece. 17-26. https://doi.org/10.1145/1995441.1995444

Thomas Neumann, Tobias Mithlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD 2015. 677-689. https://doi.org/10.1145/2723372.2749436

Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur:
A Framework for Hybrid CPU-FPGA Databases. In FCCM 2017, Napa, CA, USA,
April 30 - May 2, 2017. 211-218. https://doi.org/10.1109/FCCM.2017.37

Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. PVLDB 5, 12 (2012), 1850-1861.

Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. 2016. RUMA has it:
Rewired User-space Memory Access is Possible! PVLDB 9, 10 (2016), 768-779.
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013. 18-32. https://doi.org/10.1145/2517349.2522713

Annett Ungethiim, Dirk Habich, Tomas Karnagel, Sebastian Haas, Eric Mier,
Gerhard Fettweis, and Wolfgang Lehner. 2017. Overview on Hardware Optimiza-
tions for Database Engines. In BTW 2017, 6.-10. Mdrz 2017, Stuttgart, Germany,
Proceedings. 383-402.

Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2017.
Efficiently making (almost) any concurrency control mechanism serializable.
The VLDB Journal 26, 4 (01 Aug 2017), 537-562. https://doi.org/10.1007/
500778-017-0463-8

Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency
Control for Highly Contended Dynamic Workloads on a Thousand Cores. PVLDB
10, 2 (2016), 49-60. http://www.vldb.org/pvldb/vol10/p49-wang.pdf

Gerhard Weikum and Gottfried Vossen. 2002. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB
10, 7 (2017), 781-792.

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8, 3 (2014), 209-220.

A VM_SNAPSHOT IMPLEMENTATION

DETAILS

For the interested reader, the follow section provides a detailed
description of the implementation details of vm_snapshot.

void* vm_snapshot(voidx src_addr,
size_t length);

(1) Check if the virtual memory area to snapshot in the range
[src_addr, src_addr + length — 1] is actually allocated. If no,
the call fails with return value MAP_FAILED and sets errno
accordingly.

Allocate a fresh virtual memory area [dst_addr, dst_addr +

length — 1] that will map to the pages backed by the source

virtual memory area.

Identify all VMAs that describe the virtual memory area

[src_addr, src_addr + length — 1]. This might be one VMA

or multiple ones. Let us call them in the following VMA, to

VMA,,_1, if n VMASs describe the area.

It is possible that VMA(and VMA,,_1, the VMAs describing

the borders of the virtual memory area, span larger than the

area to replicate. This can be the case if virtual memory be-
fore src_addr or after src_addr+1length is currently allocated
as well. In this case, we split VMA(and VMA,,_; at src_addr
respectively src_addr + length. If a split happens, we update

VMA(and VMA,,_; to the VMAs that now exactly match

the borders of the region to replicate.

(5) Iterate over VMA(to VMA,,_1. Let us refer to the current
item as VMA;. Further, let us define size(VMA;) as the size
of the described virtual memory area and of fset(VMA;) as
the address of the described virtual memory area relative
to src_addr. Now, we create an exact copy of VMA; and
update the virtual memory area described by it to [dst_addr
+ offset(VMA;), dst_addr + of fset(VMA;) + size(VMA);)).

(6) Further, we check whether VMA; describes a shared or a
private virtual memory area. If VMA; is shared, nothing
more has to be done for this VMA. If VMA, is private, we
additionally have to modify the page table, if there exist PTEs
for the virtual memory area that VMA; is describing. In this
case, we identify all k PTEs, which relate to VMA;, as PTE,
to PTE;_;.

(7) Iterate over PTE(to PTE;_;. Let us refer to the current
item as PTE;. If pageoffset(PTE;) returns the address of the
mapped virtual page relative to src_addr, we create a copy
of PTE; and update the start address of the mapped virtual
page in the copy to dst_addr + pageoffset(PTE). This step is
necessary for private VMAs, as any write that is happening
to the described virtual memory area results in a copy-on-
write, that is handled with an anonymous physical page. As
the information about the physical page is not present in the
VMA but only in the corresponding PTE, we have to modify
the page table in this case.

(8) In the end, we update the statistics kept by the kernel that
tracks the VM area reserved by the process.

2

~

(3

=

—~
N
=

After these steps, the virtual memory area [dst_addr, dst_addr +
length — 1] contains the snapshot and can be accessed.

http://www.memsql.com
http://www.mysql.com
http://www.nuodb.com
http://www.pelotondb.org
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/1031570.1031573
https://doi.org/10.1145/2933349.2933351
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1007/978-3-319-56111-0_8
https://doi.org/10.1145/130283.130306
https://doi.org/10.1145/1995441.1995444
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1109/FCCM.2017.37
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1007/s00778-017-0463-8
http://www.vldb.org/pvldb/vol10/p49-wang.pdf

	Abstract
	1 Introduction
	1.1 Limitations of MVCC
	1.2 Hybrid Processing
	1.3 Challenges

	2 Background
	2.1 MVCC in Hybrid Processing
	2.2 High-Frequency Snapshotting
	2.3 Structure & Contributions

	3 AnKer
	3.1 Mechanisms of MVCC
	3.2 Hybrid MVCC

	4 State-of-the-art Snapshotting
	4.1 Physical Snapshotting
	4.2 Virtual Snapshotting
	4.3 Reevaluating the State-of-the-Art

	5 System Call vm_snapshot
	5.1 Semantics
	5.2 Implementation
	5.3 Evaluation

	6 Experimental Evaluation
	6.1 System Configurations
	6.2 Experimental Setup
	6.3 Snapshotting Cost and OLAP Latency
	6.4 Transaction Throughput
	6.5 Scaling

	7 Future Work
	8 Conclusion
	References
	A VM_SNAPSHOT Implementation Details

