
Noname manuscript No.
(will be inserted by the editor)

An Experimental Evaluation and Analysis of Database Cracking

Felix Martin Schuhknecht · Alekh Jindal · Jens Dittrich

Received: date / Accepted: date

Abstract Database cracking has been an area of active re-
search in recent years. The core idea of database cracking
is to create indexes adaptively and incrementally as a side-
product of query processing. Several works have proposed
different cracking techniques for different aspects includ-
ing updates, tuple-reconstruction, convergence, concurrency
control, and robustness. Our 2014 VLDB paper “The Un-
cracked Pieces in Database Cracking”1 was the first com-
parative study of these different methods by an indepen-
dent group. In this article, we extend our published exper-
imental study on database cracking and bring it to an up-to-
date state. Our goal is to critically review several aspects,
identify the potential, and propose promising directions in
database cracking. With this study, we hope to expand the
scope of database cracking and possibly leverage cracking
in database engines other than MonetDB.

We repeat several prior database cracking works includ-
ing the core cracking algorithms as well as three other works
on convergence (hybrid cracking), tuple-reconstruction
(sideways cracking), and robustness (stochastic cracking)
respectively. Additionally to our conference paper, we now
also look at a recently published study about CPU efficiency
(predication cracking). We evaluate these works and show
possible directions to do even better. As a further extension,
we evaluate the whole class of parallel cracking algorithms
that were proposed in three recent works. Altogether, in this
work we revisit 8 papers on database cracking and evalu-
ate in total 18 cracking methods, 6 sorting algorithms, and 3

full index structures. Additionally, we test cracking under a

F. M. Schuhknecht, J. Dittrich
Information Systems Group, Saarland University

A. Jindal
CSAIL, MIT

1 PVLDB, 7(2): 97-108, 2013 / VLDB 2014

variety of experimental settings, including high selectivity2

queries, low selectivity queries, varying selectivity, and mul-
tiple query access patterns. Finally, we compare cracking
against different sorting algorithms as well as against differ-
ent main-memory optimized indexes, including the recently
proposed Adaptive Radix Tree (ART). Our results show that:
(i) the previously proposed cracking algorithms are repeat-
able, (ii) there is still enough room to significantly improve
the previously proposed cracking algorithms, (iii) paralleliz-
ing cracking algorithms efficiently is a hard task, (iv) crack-
ing depends heavily on query selectivity, (v) cracking needs
to catch up with modern indexing trends, and (vi) different
indexing algorithms have different indexing signatures.

Keywords Adaptive Indexing · Database Cracking

1 Introduction

1.1 Background

Traditional database indexing relies on two core assump-
tions: (1) the query workload is available, and (2) there
is sufficient idle time to create the indexes. Unfortunately,
these assumptions are not valid anymore in modern applica-
tions, where the workload is not known or constantly chang-
ing and the data is queried as soon as it arrives. Thus, sev-
eral researchers have proposed adaptive indexing techniques
to cope with these requirements. In particular, Database
Cracking has emerged as an attractive approach for adaptive
indexing in recent years [8,11,14,15,16,17,18]. Since the re-
lease of our conference paper [25] on which this work builds
upon, three more studies have been published [3, 9, 23].
Database Cracking proposes to create indexes adaptively
and as a side-product of query processing. The core idea is

2 Low selectivity means, that many entries qualify. Consequently, a
high selectivity means, that only few entries qualify.

2 Felix Martin Schuhknecht et al.

Column A Column A after Q1 Column A after Q2
Q1: select *

from R
 where R.A>10

 and R.A < 14

Q2: select *
from R

 where R.A>7
 and R.A <= 16

in
de

x

A <=10

10 < A <14

A >=14

in
de

x
10 < A <14

7 < A <=10

14 <= A <=16

16 < A

A <= 7

13
16
4
9
2

12
7
1

19
3

14
11
8
6

4
9
2
7
1
3
8
6

13
12
11
16
19
14

4
2
1
3
6
7
9
8

13
12
11
14
16
19

(a) (b) (c)

Fig. 1 Database Cracking Example

to consider each incoming query as a hint for data reorgani-
zation which eventually, over several queries, leads to a full
index. Figure 1 recaps and visualizes the concept.

1.2 Our Focus

Database Cracking has been an area of active research in
recent years, led by researchers from CWI Amsterdam.
This research group has proposed several different index-
ing techniques to address different dimensions of database
cracking, including updates [14], tuple-reconstruction [15],
convergence [16], concurrency-control [8, 9], and robust-
ness [11]. In this paper, we critically review database crack-
ing in several aspects. We repeat the core cracking algo-
rithms, i.e. crack-in-two and crack-in-three [17], as well as
three advanced cracking algorithms [11,15,16]. We identify
the weak spots in these algorithms and discuss extensions
to fix them. Additionally, we inspect a recently published
work [23], which identifies CPU efficiency problems in the
standard cracking algorithm and proposes alternatives. Fur-
thermore, we investigate the current state-of-the-art in paral-
lel cracking algorithms [3,8,9,23] and compare them against
each other. Finally, we also extend the experimental param-
eters previously used in database cracking, e.g. by varying
the query selectivities and by comparing against more re-
cent, main-memory optimized indexing techniques, includ-
ing ART [20].

Our goal is to put database cracking in perspective by
repeating several prior cracking works, giving new insights
into cracking, and offering promising directions for future
work. We believe that this will help the database commu-
nity to understand database cracking better and to possibly
leverage cracking for database systems other than MonetDB
as well. Our core contributions in this paper are as follows:

1. Revisiting Cracking. We revisit the core cracking al-
gorithms, i.e. crack-in-two and crack-in-three [17], and
compare them for different positions of the pivot ele-
ments. We do a cost breakdown analysis of the crack-

ing algorithm into index lookup, data shuffle, index up-
date, and data access costs. Further, we identify four
major concerns, namely CPU efficiency, convergence,
tuple reconstruction, and robustness. In addition, we
evaluate advanced cracking algorithms, namely pred-
ication cracking [23], hybrid cracking [16], sideways
cracking [15], and stochastic cracking [11] respectively,
which were proposed to address these concerns. Addi-
tionally, in order to put together the differences and sim-
ilarities between different cracking algorithms, we clas-
sify the cracking algorithms based on the strategy to pick
the pivot, the creation time, and the number of partitions
(Section 2).

2. Extending Cracking Algorithms. In order to better
understand the cracking behavior, we modify three
advanced cracking algorithms, namely hybrid crack-
ing [16], sideways cracking [15], and stochastic crack-
ing [11]. We show that buffering the swap elements in a
heap before actually swapping them (buffered swapping)
can lead to better convergence than hybrid cracking.
Next, we show that covering the projection attributes
with the cracker column (covered cracking) scales better
than sideways cracking in the number of projected at-
tributes. Finally, we show that creating more balanced
partitions upfront (coarse-granular indexing) achieves
better robustness in query performance than stochastic
cracking. We also map these extensions to our cracking
classification (Section 3).

3. Extending Cracking Experiments. As a next step, we
extend the cracking experiments in order to test crack-
ing under different settings. First, we compare database
cracking against full indexing using different sorting al-
gorithms and index structures. In previous works on
database cracking quick sort is used to order the data
indexed by the traditional methods that are used for
comparison. Further, the cracker index is realized by an
AVL-Tree [2] to store the index keys. In this paper, we
do a reality check with recent developments in sorting
and indexing for main-memory systems. We show that
full index creation with radix sort is twice as fast as with
quick sort. We also show that ART [20] is up to 3.6 times
faster than the AVL-Tree in terms of lookup time. We
also vary the query selectivity from very high selectivity
to medium selectivity and compare the effects. We con-
clude two key observations: (i) the choice of the index
structure has an impact only for very high selectivities,
i.e. higher than 10−6 (one in a million), otherwise the
data access costs dominate the index lookup costs; and
(ii) cracking creates more balanced partitions and hence
converges faster for medium selectivities, i.e. around
10%. We also look at the effect of stopping the crack-
ing process at a certain partition size. Furthermore, we

An Experimental Evaluation and Analysis of Database Cracking 3

apply a sequential and a skewed query access pattern
and analyse how the different adaptive indexing meth-
ods cope with them. Our results show that sequential
workloads are the weak spots of query driven meth-
ods while skewed patterns increase the overall variance
(Section 4).

4. Parallelizing Cracking Algorithms. As exploiting
modern hardware implies using the multi-threading ca-
pabilities of the system, we investigate in this section
how the cracking algorithms can be parallelized. To do
so, we first reevaluate a lock-based parallel standard
cracking algorithm [8,9] that serializes the crack-in-two
operation at the granularity of partitions of data for inter-
query parallelism. Additionally, we add the algorithms
we proposed in our study on parallel adaptive indexing
algorithms [3] and put the methods under a new setup to
the test. We include our parallel-coarse granular index
that builds upon parallel standard cracking. We com-
pare these methods to our intra-query parallel versions
of standard cracking and coarse-granular index [3], that
realize concurrency by dividing the column into chunks.
We compare the parallel cracking algorithms with our
two competitive parallel radix sort implementations [3]
to evaluate the relation between cracking and sorting
in a multi-threaded environment. Furthermore, we pro-
pose two realizations of parallel sideways cracking to
put them to the test. Last but not least, we evaluate all
parallel algorithms under skewed queries, skewed input
and clustered input (Section 5).

5. Conclusion. Finally, we conclude by putting together
the key lessons learned. Additionally, we also introduce
signatures to characterize the indexing behavior of dif-
ferent indexing methods and to understand as well as
differentiate them visually (Section 6).

Experimental Setup. We use a common experimental setup
throughout the paper. We try to keep our setup as close as
possible to the earlier cracking works. Similar to previous
cracking works, we use an integer array with 108 uniformly
distributed values with a key range of [0; 100, 000]. Unless
mentioned otherwise, we run 1000 random queries, each
with selectivity 1%. The queries are of the form: SELECT
A FROM R WHERE A>=low AND A<high. We repeat
the entire query sequence three times and take the average
runtime of each query in the sequence. We consider two
baselines: (i) scan which reads the entire column and post-
filters the qualifying tuples, and (ii) full index which fully
sorts the data using quick sort and performs binary search
for query processing. If not stated otherwise, all indexes are
unclustered and uncovered. We implemented all algorithms
in a stand-alone program written in C/C++ and compile with
G++ version 4.7 using optimization level 3. Our test bed
consists of a single machine with two Intel Xeon X5690

processors running at a clock speed of 3.47 GHz and sup-
ports Intel Turbo Mode. Each CPU has 6 cores and supports
12 threads via Intel Hyper Threading. The L1 and L2 cache
sizes are 64 KB and 256 KB respectively for each core. The
shared L3 cache has a size of 12 MB. Our machine has 200
GB of main memory and runs a 64-bit linux with kernel 3.1.

2 Revisiting Cracking

Let us start by revisiting the original cracking algo-
rithm [17]. Our goal in this section is to first compare crack-
in-two with crack-in-three, then to repeat the standard crack-
ing algorithm under similar settings as in previous works,
then to break down the costs of cracking into individual
components, and finally to identify the major concerns in
the original cracking algorithm.

2.1 Crack-in-two vs Crack-in-three

crack-in-two: partition the index column into two pieces us-
ing one end of a range query as the boundary.
crack-in-three: partition the index column into three pieces
using the two ends of a range query as the two boundaries.
The original cracking paper [17] introduces two algorithms:
crack-in-two and crack-in-three to partition (or split) a col-
umn into two and three partitions respectively. Conceptu-
ally crack-in-two is suitable for one-sided range queries,
e.g. A < 10, whereas crack-in-three for two-sided range
queries, e.g. 7 < A < 10. However, we could also apply
two crack-in-twos for a two-sided range query. Let us now
compare the performance of crack-in-two and crack-in-three
on two-sided range queries. We consider the cracking oper-
ations from a single query and vary the position of the split
line in the cracker column from bottom (low relative posi-
tion) to top (high relative position). A relative position of
the low key split line of p% denotes that the data is par-
titioned into two parts with size p% and (100 − p)%. We
expect the cracking costs to be the maximum around the
centre of the column (since maximum swapping will occur)
and symmetrical on either ends of the column. Figure 2(a)
shows the results. Though both 2×crack-in-two and crack-
in-three have maximum costs around the center, surprisingly
crack-in-three is not symmetrical on either ends. Crack-in-
three is much more expensive in the lower part of the column
than in the upper part. This is because crack-in-three always
starts considering elements from the top. Another interesting
observation from Figure 2(a) is that even though 2×crack-
in-two performs two cracking operations, it is cheaper than
crack-in-three when the split position is in the lower 70%

of the column. Thus, we see that crack-in-two and crack-in-
three are very different algorithms in terms of performance
and future works should consider this when designing newer
algorithms.

4 Felix Martin Schuhknecht et al.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

2 x CrackInTwo
CrackInThree

(a) Comparing Single Query Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index

(b) Reproducing Cracking Behaviour

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
[m

s]

Query Sequence

Index Lookup
Data Shuffle

Index Update
Data Access

(c) Cost Breakdown
Fig. 2 Revisiting Standard Cracking

2.2 Standard Cracking Algorithm

standard cracking: incrementally and adaptively sort the
index column using crack-in-three when both ends of a
range query fall in the same partition and crack-in-two oth-
erwise.
We implemented the standard cracking algorithm which
uses crack-in-three wherever two split lines lie in the same
partition, and tested it under the same settings as in pre-
vious works. As in the original papers, we use an AVL-
Tree as cracker index to be able to compare the results. Fig-
ure 2(b) shows the results. We can see that standard crack-
ing starts with similar performance as full scan and gradu-
ally approaches the performance of full index. Moreover, the
first query takes just 0.3 seconds compared to 0.24 seconds
of full scan3, even though standard cracking invests some
indexing effort. In contrast, full index takes 10.2 seconds to
fully sort the data before it can process the first query. This
shows that standard cracking is lightweight and it puts little
penalty on the first query. Overall, we are able to reproduce
the cracking behavior of previous works.

2.3 Cost Breakdown

Next let us see the cost breakdown of the original cracking
algorithm. The goal here is to see where the cracking query
engine spends most of the time and how that changes over
time. Figure 2(c) shows the cost breakdown of the query re-
sponse time into four components: (i) index lookup costs to
identify the partitions for cracking, (ii) data shuffle costs of
swapping the data items in the column, (iii) index update
costs for updating the index structure with the new parti-
tions, and (iv) data access costs to actually access the quali-
fying tuples. We can see that the data shuffle costs dominate
the total costs initially. However, the data shuffle costs de-
crease gradually over time and match the data access costs
after 1, 000 queries. This shows that standard cracking does
well to distribute the indexing effort over several queries. We

3 Note that the query time of full scan varies by as much as 4 times.
This is because of lazy evaluation in the filtering depending on the
position of low key and high key in the value domain.

can also see that index lookup and update costs are orders of
magnitude less than the data shuffle costs. For instance, after
10 queries, the index lookup and update costs are about 1µs
whereas the shuffle costs are more than 100 ms. This shows
that standard cracking is indeed lightweight and has very
little index maintenance overheads. However, as the number
of queries increases, the data shuffle costs decrease while
the index maintenance costs increase.

2.4 Key Concerns in Standard Cracking

Let us now take a closer look at the standard cracking algo-
rithm from four different perspectives, namely (1) CPU effi-
ciency on modern hardware, (2) convergence to a full index,
(3) scaling the number of projected attributes, (4) variance
in query performance. Additionally, mapping cracking algo-
rithms to parallel hardware is a challenging task. Therefore,
we will spend an entire chapter on this.

1. CPU Efficiency. How an algorithm is mapped to the
underlying hardware is crucial in memory resident data
processing. Figure 3(a) shows the branch misprediction4

as the weak spot of the crack-in-two algorithm with re-
spect to the relative position of the split line, making this
method clearly CPU bound. At a worst-case position of
the split line dividing the partition in the middle, more
than 50% of the branches are predicted incorrectly.

2. Cracking Convergence. Convergence is a key concern
and major criticism for database cracking. Figure 3(b)
shows the number of queries after which the query re-
sponse time of standard cracking is within a given per-
centage of full index. The figure also shows a bezier
smoothened curve of the data points. From the figure we
can see that after 1, 000 queries, on average, the query
response time of standard cracking is still 40% higher
than that of full index.

3. Scaling Projected Attributes. By default, database
cracking leads to an unclustered index, i.e. extra lookups
are needed to fetch the projected attributes. Figure 3(c)

4 Measured with Intel VTune Amplifier 2015.

An Experimental Evaluation and Analysis of Database Cracking 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(A
ll

C
yc

le
s)

/(
W

as
te

d
C

yc
le

s
du

e
to

 B
ra

nc
h

M
is

s)

In
st

ru
ct

io
ns

 R
et

ire
d

[m
io

]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (Branch Misprediction)
1 x CrackInTwo (Instructions Retired)

(a) CPU Efficiency

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

R
es

po
ns

e
T

im
e

H
ig

he
r

th
an

 F
ul

l I
nd

ex
 [%

]

Query Sequence

Individual Points
Bezier Smoothed

(b) Cracking Convergence

 1

 10

 100

 1000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(c) Scaling Projected Attributes

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

V
ar

ia
nc

e

Query Sequence

Individual Points (EWMA alpha = 0.1)

(d) Cracking Variance
Fig. 3 Key Concerns in Standard Cracking

shows the query response time with tuple reconstruc-
tion, when varying the number of projected attributes
from 1 to 10. For the ease of presentation, we show
only the bezier smoothened curves. We can see that stan-
dard cracking does not scale well with the number of
attributes. In fact, after 1, 000 queries, querying 10 at-
tribute tuples is almost 2 orders of magnitude slower
than querying 1 attribute tuples.

4. Cracking Variance. Standard cracking partitions the in-
dex column based on the query ranges of the selection
predicate. As a result, skewed query range predicates can
lead to skewed partitions and thus unpredictable query
performance. Figure 3(d) shows the variance of standard
cracking query response times using the exponentially
weighted moving average (EWMA). The variance is cal-
culated as described in [7]. The degree of weighting de-
crease is α = 0.1. We can see that unlike full index (see
Figure 2(b)), cracking does not exhibit stable query per-
formance. Furthermore, we also see that the amount of
variance for standard cracking decreases by five orders
of magnitude.

5. Cracking Parallelization. The support of concurrency
is crucial for performance on modern multi-core hard-
ware. Therefore, the cracking algorithms must be ex-
tended to scale well with the available computing cores.
As this is a challenging task, we will investigate this sep-
arately in Section 5.

2.5 Advanced Cracking Algorithms

Several follow-up works on cracking focussed on the key
concerns in standard cracking. In this section, we revisit
these advanced cracking techniques.

predication & vectorized cracking: decouple pivot com-
parison and physical reorganisation by moving elements
speculatively and correcting wrong decisions afterwards.

The technique of predication cracking [23] directly attacks
a major problem in standard cracking — excessive branch
misprediction leading to large amounts of unnecessarily ex-
ecuted code. In contrast to standard cracking, where based
on the outcome of the comparison of the element with the
pivot, pointers are moved and elements are swapped, pred-
ication cracking speculatively performs these reorganiza-
tions and interleaves them with the comparison evaluations
of pivot and elements. When the result of the comparison
is available, the incorrectly applied reorganizations are cor-
rected. To ensure that the speculative writing does not cause
data loss, the overwritten elements are backed up separately.
This concept makes the algorithm completely branch-free
and thus, the misprediction penalties do not longer exist. On

6 Felix Martin Schuhknecht et al.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

2 x CrackInTwo
CrackInThree

2 x Predication Cracking
2 x Vectorized Cracking (128B)

(a) Single Query Indexing Time

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo
1 x Predication Cracking

1 x Vectorized Cracking (128B)

(b) Single Crack Indexing Time on 16 B Elements

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (4B Key only)
1 x Predication Cracking (4B Key only)

1 x Vectorized Cracking (128B) (4B Key only)

(c) Single Crack Indexing Time on 4 B Elements
Fig. 4 Standard Cracking in Comparison with Predication Cracking and Vectorized Cracking

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(A
ll

C
yc

le
s)

/(
W

as
te

d
C

yc
le

s
du

e
to

 B
ra

nc
h

M
is

s)

In
st

ru
ct

io
ns

 R
et

ire
d

[m
io

]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (Branch Misprediction)
1 x Predication Cracking (Branch Misprediction)

1 x Vectorized Cracking (128B) (Branch Misprediction)
1 x CrackInTwo (Instructions Retired)

1 x Predication Cracking (Instructions Retired)
1 x Vectorized Cracking (128B) (Instructions Retired)

Fig. 5 CPU Efficiency.

the downside, the speculative writing adds an overhead com-
pared to standard cracking. The question is now whether this
trade-off can improve the runtime.
In predication cracking, the granularity at which data is
backed up is fixed to a single element. Thus the authors pro-
pose a generalization of the concept in form of vectorized
cracking, where data is backed up and partitioned in larger
blocks of adjustable size. This further decouples the costly
backing up of data from the actual partitioning.

In Figure 5 we add both predication cracking as well
as vectorized cracking with a vector size of 128B, which
showed the best results in our evaluation, to the plot of Fig-
ure 3(a). Compared to standard cracking, the problem of
branch misprediction vanishes almost entirely. However, we
can also observe that the number of retired instructions dras-
tically increases over the standard version. Thus, the con-
cept of predication basically trades in a higher reorganiza-
tion effort for less branching penalties. Vectorized crack-
ing reduces this overhead by using larger blocks, resulting
in a lower number of retired instructions while maintain-
ing a negligible branch misprediction. This observed trade-
off already indicates that the actual runtimes between stan-
dard and predication/vectorized cracking might be close to
each other. Figure 4(a) shows the result when extending the
study of Figure 2(a) with predication and vectorized crack-
ing. Unfortunately, although vectorized cracking performs

 2

 4

 6

 8

 10

 12

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Standard Cracking
Predication Cracking

Vectorized Cracking (32B)
Vectorized Cracking (64B)

Vectorized Cracking (128B)

Vectorized Cracking (256B)
Vectorized Cracking (512B)

Vectorized Cracking (1024B)
Vectorized Cracking (2048B)
Vectorized+Standard (128B)

Fig. 6 Predication and Vectorized Cracking over Query Sequence.

slightly better than predication cracking in all cases, both
methods do not significantly pay off over applying crack-in-
two twice. On first sight, these results look contrary to the
ones presented in [23]. However, comparing the experimen-
tal setups, two differences become clear. Firstly, in [23], the
authors work on pure 4 B keys in contrast to our 16 B (key,
rowID) pairs, that are in our opinion more realistic to rep-
resent an index column. As predication/vectorized cracking
is write intensive, a larger element size puts more pressure
on these methods than on the standard ones. Secondly, we
perform one query consisting of two cracks here, instead of
only a single crack in [23]. As our second crack is 1% of
the data size to the right of the first one, only few swaps
must be performed and the branch prediction for standard
cracking works already very well. To confirm the original
results of [23], we rerun the experiment with 4 B keys and
only a single crack in Figure 4(c). Now, we see a clear bene-
fit of both predication and vectorized cracking over standard
crack-in-two, if the split line falls between 20% and 80%

of the key range. However, when using our standard 16 B
pairs (Figure 4(b)) the single-crack runtime increases heav-
ily for predication and vectorized cracking, but only slightly
for standard crack-in-two.

Let us finally look at how the predicated methods per-
form under a sequence of 1000 queries. Figure 6 shows the
results. In accordance to the results of Figure 4(a), neither

An Experimental Evaluation and Analysis of Database Cracking 7

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Hybrid Crack Sort

Standard Cracking (bezier smoothed)
Hybrid Crack Sort (bezier smoothed)

(a) Hybrid Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking (# Proj. Attributes: 2)
Scan (# Proj. Attributes: 2)

Full Index (# Proj. Attributes: 2)
Clustered Full Index (# Proj. Attributes: 2)
Sideways Cracking (# Proj. Attributes: 2)

(b) Sideways Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Stochastic Cracking (MDD1R)

(c) Stochastic Cracking
Fig. 7 Revisiting Three Advanced Cracking Algorithms

predication nor vectorized cracking can beat standard crack-
ing with respect to accumulated query response time. The
best vector size is clearly 128B on our machine, where other
sizes perform significantly worse. However, our previous in-
sights enable us to use the best of two worlds. By using vec-
torized cracking for the first crack and standard cracking for
the nearby second crack of a query, we are able to improve
slightly over the standard version. Overall, whether predi-
cation and vectorized cracking pay off highly depends on
element size, split line position, and machine properties.

hybrid cracking: create unsorted initial runs which are
physically reorganized and then adaptively merged for
faster convergence.

Hybrid cracking [16] aims at improving the poor conver-
gence of standard cracking to a full index, as shown in
Figure 3(b). Hybrid cracking combines ideas from adaptive
merging [10] with database cracking in order to achieve fast
convergence to a full index, while still keeping low initial-
ization costs. The key problem in standard cracking is that it
creates at most two new partition boundaries per query, and
thus requires several queries to converge to a full index. On
the other hand, adaptive merging creates initial sorted runs,
and thus pays a high cost for the first query.

Hybrid cracking overcomes these problems by creating
initial unsorted partitions and later adaptively refining them
with lightweight reorganization. In addition to reorganizing
the initial partitions, hybrid cracking also moves the quali-
fying tuples from each initial partition into a final partition.
The authors explore different strategies for reorganizing the
initial and final partitions, including sorting, standard crack-
ing, and radix clustering, and conclude standard cracking to
be the best for initial partitions and sorting to be the best for
final partition. By creating initial partitions in a lightweight
manner and introducing several partition boundaries, hybrid
cracking converges better. We implemented hybrid crack
sort, which showed the best performance in [16], as close
to the original description as possible. Figure 7(a) shows
hybrid crack sort in comparison to standard cracking, full
index, and scan. We can see that hybrid crack sort converges

faster as compared to standard cracking.

sideways cracking: adaptively create, align, and crack
every accessed selection-projection attribute pair for
efficient tuple reconstruction.

Sideways Cracking [15] uses cracker maps to address the is-
sue of inefficient tuple reconstruction in standard cracking,
as shown in Figure 3(c). A cracker map consists of two log-
ical columns, the cracked column and a projected column,
and it is used to keep the projection attributes aligned with
the selection attributes. When a query comes in, sideways
cracking creates and cracks only those crackers maps that
contain any of the accessed attributes. As a result, each ac-
cessed column is always aligned with the cracked column of
its cracker map. If the attribute access pattern changes, then
the cracker maps may reflect different progressions with re-
spect to the applied cracks. Sideways cracking uses a log
to record the state of each cracker map and to synchronize
them when needed. Thus, sideways cracking works without
any workload knowledge and adapts cracker maps to the at-
tribute access patterns. Further, it improves its adaptivity and
reduces the amount of overhead by only materializing those
parts of the projected columns in the cracker maps which are
actually queried (partial sideways cracking).

We reimplemented sideways cracking similar to as de-
scribed above, except that we store cracker maps in row
layout instead of column layout. We do so because the two
columns in a cracker map are always accessed together and
a row layout offers better tuple reconstruction. In addition to
the cracked column and the projected column, each cracker
map contains the rowIDs that map the entries into the base
table as well as a status column denoting which entries of
the projected column are materialized.

Figure 7(b) shows the performance of sideways crack-
ing in comparison. In this experiment the methods have to
project one attribute while selecting on another. In addition
to the unclustered version of full index, we also show the
clustered version (clustered full index). We can see that
sideways cracking outperforms all unclustered methods
after about 100 queries and approaches the query response

8 Felix Martin Schuhknecht et al.

time of clustered full index. Thus, sideways cracking offers
efficient tuple reconstruction.

stochastic cracking: create more balanced partitions using
auxiliary random pivot elements for more robust query
performance.

Stochastic cracking [11] addresses the issue of performance
unpredictability in database cracking, as seen in Figure 3(d).
A key problem in standard cracking is that the partition
boundaries depend heavily on the incoming query ranges.
As a result, skewed query ranges can lead to unbalanced par-
tition sizes and successive queries may still end up rescan-
ning large parts of the data. To reduce this problem, stochas-
tic cracking introduces additional cracks apart from the
query-driven cracks at query time. These additional cracks
help to evolve the cracker index in a more uniform man-
ner. Stochastic cracking proposes several variants to intro-
duce these additional cracks, including data driven and prob-
abilistic decisions. By varying the amount of auxiliary work
and the crack positions, stochastic cracking manages to in-
troduce a trade-off situation between variance on one side
and cracking overhead on the other side.

We reimplemented the MDD1R variant of stochas-
tic cracking, which showed the best overall performance
in [11]. In this variant, the partitions in which the query
boundaries fall are cracked by performing exactly one ran-
dom split. Additionally, while performing the random split,
the result of each partition at the boundary of the queried
range is materialized in a separate view. At query time the
result is built by reading the data of the boundary partitions
from the views and the data of the inner part from the index.

Figure 7(c) shows the MDD1R variant of stochastic
cracking. We can see that stochastic cracking (MDD1R) be-
haves very similar to standard cracking, although the query
response times are overall slower than those of standard
cracking. As the uniform random access pattern creates bal-
anced partitions by default, the additional random splits in-
troduced by stochastic cracking (MDD1R) do not have an
effect. We will come back to stochastic cracking (MDD1R)
with other access patterns in Section 4.5.

2.6 Cracking Classification

Let us now compare and contrast the different cracking al-
gorithms discussed so far with each other. The goal is to
understand what are the key differences (or similarities) be-
tween these algorithms. This will possibly help us in identi-
fying the potential for newer cracking algorithms. Note that
all cracking algorithms essentially split the data incremen-
tally. Different algorithms split the data differently. Thus, we
categorize the cracking algorithms along three dimensions:

(i) the number of split lines they introduce, (ii) the split strat-
egy, and (iii) the timing of the split. Table 1 shows the clas-
sification of different cracking algorithms along these three
dimensions. Let us discuss these below.

Table 1 Classification of Cracking Algorithms.

DIMENSIONS CATEGORY NO
INDEX

STANDARD
CRACKING /
PREDICATION
CRACKING

HYBRID
CRACKING
(CRACK SORT)

SIDEWAYS
CRACKING

STOCHASTIC
CRACKING
(MDD1R)

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

Number of Split Lines. The core cracking philosophy man-
dates all cracking algorithms to do some indexing effort,
i.e. introduce at least one split line, when a query arrives.
However, several algorithms introduce other split lines as
well. We classify the cracking algorithms into the follow-
ing four categories based on the number of split lines they
introduce.

1. Zero: The trivial case is when a method introduces no
split line and each query performs a full scan.

2. Few: Most cracking algorithms introduce a few split
lines at a time. For instance, standard cracking intro-
duces either one or two splits lines for each incoming
query. Similarly, sideways cracking introduces split lines
in all accessed cracker maps.

3. Several: Cracking algorithms can also introduce several
split lines at a time. For example, hybrid crack sort may
introduce several thousand initial partitions and intro-
duce either one or two split lines in each of them. Thus,
generating several split lines in total.

4. All: The extreme case is to introduce all possible split
lines, i.e. fully sort the data. For example, hybrid crack
sort fully sorts the final partition, i.e. introduces all split
lines in the final partition.

Split Strategy. Standard cracking chooses the split lines
based on the incoming query. However, several advanced
cracking algorithms employ other strategies. Below, we
classify the cracking algorithms along four splitting strate-
gies.

1. Query Based: The standard case is to pick the split lines
based on the selection predicates in the query, i.e. the
low and high keys in the query range.

2. Data Based: We can also split data without looking at a
query. For example, full sorting creates split lines based
only on the data.

An Experimental Evaluation and Analysis of Database Cracking 9

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

R
es

po
ns

e
T

im
e

H
ig

he
r

th
an

 F
ul

l I
nd

ex
 [%

]

Query Sequence

Standard Cracking
Hybrid Crack Sort
Hybrid Radix Sort

Hybrid Sort Sort

(a) Convergence Speed towards Full Index

 0

 50

 100

 150

 200

 250

 300

 350

 400

1|999 10|990 100|900 1000|0

N
um

be
r

of
 S

w
ap

s
[M

ill
io

n]

Number Of Buffered | Unbuffered Queries

Standard Cracking
Hybrid Crack Sort

Buffered Swapping 100K
Buffered Swapping 1M

Buffered Swapping 10M

(b) Influence on Swap Count

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number Of Buffered | Unbuffered Queries

Remaining 1000-nb Queries

1|999 10|990 100|900 1000|0

11

(c) Influence on Query Response Time

Fig. 8 Comparing Convergence of Standard Cracking, Hybrid Cracking and Buffered Swapping

3. Random: Another strategy is to pick the split lines ran-
domly as in stochastic cracking.

4. None: Finally, the trivial case is to not have any split
strategy, i.e. do not split the data at all and perform full
scan for all queries.

Split Timing. Lastly, we consider the timing of the split to
classify the cracking algorithms. We show three time points
below.

1. Upfront: A cracking algorithm could perform the splits
before answering any queries. Full indexing falls in this
category.

2. Per Query: All cracking algorithms we discussed so far
perform splits when seeing a query.

3. Never: The trivial case is to never perform the splits,
i.e. fully scanning the data for each query.

3 Extending Cracking Algorithms

In this section, we discuss the weaknesses in the advanced
cracking algorithms and evaluate possible directions on how
to improve them.

3.1 Improving Cracking Convergence

Let us see how well hybrid cracking [16] addresses the
convergence issue and whether we can improve upon it.
First, let us compare hybrid crack sort from Figure 7(a)
with two other variants of hybrid cracking: hybrid radix
sort, and hybrid sort sort. Figure 8(a) shows how quickly
the hybrid algorithms approach to a full index. We can see
that hybrid radix sort converges similar to hybrid crack sort
and hybrid sort sort converges faster than both of them. This
suggests that the convergence property in hybrid algorithms
comes from the sort operations. However, keeping the
final partition fully sorted is expensive. Indeed, we can see
several spikes in hybrid crack sort in Figure 7(a). If a query
range is not contained in the final partition, all qualifying
entries from all initial partitions must be merged and sorted

into the final partition. Can we do better? Can we move
data elements to their final position (as in full sorting) in
a fewer number of swaps, and thus improve the cracking
convergence?

buffered-swapping: Instead of swapping elements immedi-
ately after identification by the cracking algorithm, insert
them into heaps and flush them back into the index as sorted
runs.

Let us look at the crack-in-two operation5 in hybrid crack-
ing. Recall that the crack-in-two operation scans the dataset
from both ends until we find a pair of entries which need to
be swapped (i.e. they are in the wrong partitions). This pair
is then swapped and the algorithm continues its search un-
til the pointers meet. Note that there is no relative ordering
between the swapped elements and they may end up get-
ting swapped again in future queries, thus penalizing them
over and over again. We can improve this by extending the
crack-in-two operation to buffer the elements identified as
swap pairs, i.e. buffered crack-in-two. Buffered crack-in-two
collects the swap pairs in two heaps: a max-heap for val-
ues that should go to the upper partition and a min-heap
for values that should go to the lower partition. In addi-
tion to the heap structures, we maintain two queues to store
the empty positions in the two partitions. The two heaps
keep the elements in order and when the heaps are full we
swap the top-elements in the two heaps to the next avail-
able empty position. This process is repeated until no more
swap pairs can be identified and the heaps are empty. As a
result of heap ordering, the swapped elements retain a rel-
ative ordering in the index after each cracking step. This
order is even valid for entries that were not in the heap at
the same time, but shared presence with a third element and
hence a transitive relationship is established. Every pair ele-
ment that is ordered in this process is never swapped in fu-
ture queries and thus, the number of swaps is reduced. The
above approach of buffered crack-in-two is similar to [21],

5 After the first few queries, cracking mostly performs a pair of
crack-in-two operations as the likelihood of two splits falling in two
different partitions increases with the number of applied queries.

10 Felix Martin Schuhknecht et al.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(a) Varying Number of Projected Attributes
for Sideways Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Proj. Attributes: 1
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(b) Varying Number of Projected Attributes
for Covered Cracking

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

(c) Covering Tradeoff for Tuple Reconstruction

Fig. 9 Comparing Tuple Reconstruction Cost of Standard, Sideways, and Covered Cracking

where two heaps are used to improve the stability of the
replacement selection algorithm. By adjusting the maximal
heap size in buffered crack-in-two, we can tune the conver-
gence speed of the cracked index. Larger heap size results
in larger sorted runs. However, larger heaps incur high over-
head to keep its data sorted. In the extreme case, a heap
size equal to the number of (swapped) elements results in
full sorting while a heap size of 1 falls back to standard
crack-in-two. Of course buffered crack-in-two can be em-
bedded in any method that uses the standard crack-in-two
algorithm. To separate it from the remaining methods we
integrate it into a new technique called buffered swapping
that is a mixture of buffered and standard crack-in-two. For
the first n queries buffered swapping uses buffered crack-
in-two. After that buffered swapping switches to standard
cracking-in-two. Figure 8(b) shows the number of swaps in
standard cracking, hybrid crack sort, and buffered swapping
over 1000 queries. In order to make them comparable, we
force all methods to use only crack-in-two operations. For
buffered swapping we vary the number buffered queries nb
along the X-axis, i.e. the first nb queries perform buffered
swapping while the remaining queries still perform the stan-
dard crack-in-two operation. We vary the maximal heap size
from 100K to 10M entries. From Figure 8(b), we can see
that the number of swaps decrease significantly as nb varies
from 1 to 1000. Compared to standard cracking, buffered
swapping saves about 4.5 million swaps for 1 buffered query
and 73 million swaps for 1000 buffered queries and a heap
size of 1M . The maximal size of the heap is proportional
to the reduction in swaps. Furthermore, we can observe that
the swap reduction for 1000 buffered queries improves only
marginally over that of 100 buffered queries. This indicates
that after 100 buffered queries the cracked column is already
close to being fully sorted. Hybrid cracking performs even
more swaps than standard cracking (including moving the
qualifying entries from the initial partitions to the final par-
tition).
Next let us see the actual runtimes of buffered swapping in
comparison to standard cracking and hybrid crack sort. Fig-
ure 8(c) shows the result. We see that the total runtime grows

rapidly as the number of buffered queries (nb) increases.
However, we also see that the query time after performing
buffered swapping improves. For example, after performing
buffered swapping with a maximal heap size of 1M for just
10 queries, the remaining 990 queries are 1.8 times faster
than hybrid crack sort and even 5.5% faster than standard
cracking. This shows that buffered swapping helps to con-
verge better by reducing the number of swaps in subsequent
queries. Interestingly, a larger buffer size does not neces-
sarily imply a higher runtime. For 100 and 1, 000 buffered
queries the buffered part is faster for a maximum heap size
of 10M entries than for smaller heaps. This is because such
a large heap size leads to an earlier convergence towards the
full sorting. Nevertheless, the high runtime of initial buffer
swapped queries is a concern. In our experiments we im-
plemented buffered swapping using the gheap implementa-
tion [1] with a fan-out of 4. Each element that is inserted
into a gheap has to sink down inside of the heap tree to
get to its position. This involves pairwise swaps and trig-
gers many cache-misses. Exploring more efficient buffering
mechanisms in detail opens up avenues for future work.

3.2 Improving Tuple Reconstruction

Our goal in this section is to see how well sideways
cracking [15] addresses the issue of tuple reconstruction
and whether we can improve upon it. Let us first see how
the sideways cracking from Figure 7(b) scales with the
number of attributes. Figure 9(a) shows the performance
of sideways cracking for the number of projected attributes
varying from 1 to 10. We see that in contrast to standard
cracking (see Figure 3(c)), sideways cracking scales more
gracefully with the number of projected attributes. However,
still the performance varies by up to one order of magnitude.
Furthermore, sideways cracking duplicates the index key
in all cracker maps. So the question now is, can we have a
cracking approach which is less sensitive to the number of
projected attributes?

covered-cracking: group multiple non-key attributes with
the cracked column in a cracker map. At query time, crack

An Experimental Evaluation and Analysis of Database Cracking 11

all covered non-key attributes along with the key column for
even more efficient tuple reconstruction.
Note that with sideways cracking all projected columns are
aligned with each other. However, the query engine still
needs to fetch the projected attribute values from differ-
ent columns in different cracker maps. These lookup costs
turn out to be very expensive in addition to the overhead
of cracking n replicas of the indexed column for n pro-
jected attributes. To solve this problem, we generalize side-
ways cracking to cover the n projected attributes in a single
cracker map. In the following we term this approach cov-
ered cracking. While cracking, all covered attributes of a
cracker map are reorganized with the cracked column. As
a result, all covered attributes are aligned and stored in a
consecutive memory region, i.e. no additional fetches are
involved if the accessed attribute is covered. However, the
drawback of this approach is that we need to specify which
attributes to cover. To be on a safer side, we may cover all
table attributes. However, this means that we will need to
copy the entire table for indexing. We can think of fixing this
by adaptively covering the cracked column, i.e. not copying
the covered attributes upfront but rather on-demand when
they are accessed. An option is to copy the covered attribute
columns when they are accessed for the first time. An even
more fine granular approach is to copy only the accessed
values of covered attributes and thus reflecting the query ac-
cess pattern in the covering status. Figure 9(b) shows the
performance of covered cracking over different numbers of
projected attributes. Here we show the results from covered
cracking which copies the data of all covered attributes in
the beginning. We can see that covered cracking remains sta-
ble when varying the number of projected attributes from 1

to 10. Thus, covered cracking scales well with the number
of attributes. Figure 9(c) compares the accumulated costs
of standard, sideways, and covered cracking. We can see
that while the accumulated costs of standard and sideways
cracking grow linearly with the number of attributes, the ac-
cumulated costs of covered cracking remain pegged at under
40 seconds. We also see that sideways cracking outperforms
covered cracking for only up to 4 projected attributes. For
more than 4 projected attributes, sideways cracking becomes
increasingly expensive whereas covered cracking remains
stable. Thus, we see that covering offers huge benefits.

3.3 Improving Cracking Robustness

In this section we look at how well stochastic cracking [11]
addresses the issue of query robustness and whether we
can improve upon it. In Figure 7(c) we can observe that
stochastic cracking is more expensive (for first as well as
subsequent queries) than standard cracking. On the other
hand, the random splits in stochastic cracking (MDD1R)
create uniformly sized partitions. Thus, stochastic cracking

trades performance for robustness. So the key question
now is: can we achieve robustness without sacrificing
performance? Can we have high robustness and efficient
performance at the same time?

coarse-granular index: create balanced partitions using
range partitioning upfront for more robust query perfor-
mance. Apply standard cracking later on.

Stochastic cracking successively refines the accessed data
regions into smaller equal sized partitions while the non-
accessed data regions remain as large partitions. As a result,
when a query touches a non-accessed data region it still ends
up shuffling large portions of the data. To solve this prob-
lem, we extend stochastic cracking to create several equal-
sized6 partitions upfront, i.e. we pre-partition the data into
smaller range partitions. With such a coarse-granular in-
dex we shuffle data only inside a range partition and thus
the shuffling costs are within a threshold. Note that in stan-
dard cracking, the initial queries have to anyways read huge
amounts of data, without gathering any useful knowledge. In
contrast, the coarse granular index moves some of that effort
to a prepare step to create meaningful initial partitions. As a
result, the cost of the first query is slightly higher than stan-
dard cracking but still significantly less than full indexing.
With such a coarse-granular index users can choose to allow
the first query to be a bit slower and witness stable perfor-
mance thereafter. Also, note that the first query in standard
cracking is anyways slower than a full scan since it partitions
the data into three parts. Coarse-granular index differs from
standard cracking in that it allows for creating any number
of initial partitions, not necessarily three. Furthermore, by
varying the number of initial partitions, we can trade the
initialization time for more robust query performance. This
means that, depending upon their application, users can ad-
just the initialization time in order to achieve a correspond-
ing robustness level. This is important in several scenarios in
order to achieve customer SLAs. In the extreme case, users
can create as many partitions as the number of distinct data
items. This results in a full index, has a very high initializa-
tion time, and offers the most robust query performance. The
other extreme is to create only a single initial partition. This
is equivalent to standard cracking scenario, i.e. very low ini-
tialization time and least robust query performance. Thus,
coarse-granular index covers the entire robustness spectrum
between standard cracking and full indexing.

Figure 10(a) shows the query response time region (con-
vex hull) of different indexing methods, including stochastic
cracking (MDD1R), coarse-granular index, and full index
(quick sort + binary search). We vary the number of initial

6 Please note that our current implementation relies on a uniform
key distribution to create equal-sized partitions. Handling skewed dis-
tributions would require the generation of equi-depth partitions.

12 Felix Martin Schuhknecht et al.

 1

 10

 100

 1000

 10000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Stochastic Cracking (MDD1R)
Coarse-granular Index 10

Coarse-granular Index 100
Coarse-granular Index 1K

Coarse-granular Index 10K
Coarse-granular Index 100K

Full Index

(a) Variance in Response Time

 0

 2

 4

 6

 8

 10

 12

 14

Standard

Stochastic

Coarse 10

Coarse 100

Coarse 1K

Coarse 10K

Coarse 100K

Quick Sort +

Binary Search

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Initialization
Query Response - Initialization

(b) Initialization Time Tradeoff

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

Coarse-granular Index 1K
Coarse-granular Index 100

(c) Extending 9(c) by Nearby Clustering
Fig. 10 Comparing Robustness of Standard Cracking, Stochastic Cracking, Coarse-granular Index, and Full Index

partitions, which are created in the first query by the coarse-
granular index from 10 to 100, 000. While stochastic crack-
ing (MDD1R) shows a variance similar to that of standard
cracking, as observed in Figure 3(d), coarse-granular index
reduces the performance variance significantly. In fact, for
different number of partitions, coarse-granular index covers
the entire space between the high-variance standard crack-
ing and low-variance full index. Figure 10(b) shows the
results. We can see that the initialization time of stochas-
tic cracking (MDD1R) is very similar to that of standard
cracking. This means that stochastic cracking (like standard
cracking) shifts most of the indexing effort to the query
time. On the other extreme, full sort does the entire indexing
effort upfront, and thus has the highest initialization time.
Coarse-granular index fills the gap between these two ex-
tremes, i.e. by adjusting the number of initial partitions we
can trade the indexing effort at the initialization time and
the query time. For instance, for 1, 000 initial partitions,
the initialization time of coarse-granular index is 65% less
than full index, while still providing more robust as well as
more efficient query performance than stochastic cracking
(MDD1R). In fact, the total query time of coarse-granular
index with 1, 000 initial partitions is 41% less than stochas-
tic cracking (MDD1R) and even 26% less than standard
cracking. Thus, coarse-granular index allows us to combine
the best of both worlds.

We can also extend the coarse-granular index and pre-
partition the base table along with the cracker column. This
means that we range partition the source table in exactly
the same way as the adaptive index during the initializa-
tion step. Though, we still refine only the cracked column
for each incoming query. The source table is left untouched.
If the partition is small enough to fit into the cache, then
the tuple reconstruction costs are negligible because of no
cache misses. Essentially, we decrease the physical distance
between external random accesses, i.e. the index entry and
the corresponding tuple are nearby clustered. This increases
the likelihood that tuple reconstruction does not incur any
cache misses. Thus, as a result of pre-partitioning the source
table, we can achieve more robust tuple reconstruction with-
out covering the adaptive index itself, as in covered cracking

in Section 3.2. However, we need to pick the partition size
judiciously. Larger partitions do not fit into the cache, while
smaller partitions result in high initialization time. Note that
if the data is stored in row layout, then the source table is
anyways scanned completely during index initialization and
so pre-partition is not too expensive. Furthermore, efficient
tuple reconstruction using nearby clustering is limited to one
index per table, same as for all primary indexes.

Figure 10(c) shows the effect of pre-partitioning the
source table. We create both 100 and 1, 000 partitions.
The cost of pre-partitioning the source table is included
in the accumulated query response time of coarse-granular
index. Both standard cracking and coarse-granular index
in Figure 10(c) start with perfectly aligned tuples. How-
ever, in standard cracking, the locality between index entry
and corresponding tuple decreases gradually and soon the
cache misses caused by random accesses destroy the perfor-
mance. Coarse-granular index, on the other hand, exploits
the nearby clustering between the index entry and the corre-
sponding tuple. Since tuples are never swapped across parti-
tions, the maximum distance between an index entry and the
corresponding tuple is at most the size of a partition. Thus,
we can see from Figure 10(c) that coarse-granular index has
a much more stable performance when scaling the num-
ber of projected attributes, without reorganizing the base ta-
ble at query time. In fact, coarse-granular index 1K even
outperforms covered cracking for any number of projected
attributes. For example, when projecting all 10 attributes,
coarse-granular index 1K is 1.7 times faster than covered
cracking, 3.7 times faster than sideways cracking, and 4.3

times faster than standard cracking. However, for 1, 000 ta-
ble partitions, each partition has a size of 8MB and thus fits
completely in the CPU cache. For 100 partitions the partition
size increases to 80MB and thus, it is over 6.5 times larger
than the cache. The results show that the concept still works.
Although coarse-granular index 100 is slower than covered
cracking for more than 4 attributes, it is still faster than side-
ways and standard cracking for more than 3 attributes. It
holds: the fewer partitions that we create the closer is the
performance to that of standard cracking. To strengthen the
robustness evaluation, we scale all experiments from Fig-

An Experimental Evaluation and Analysis of Database Cracking 13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4000 8000 12000 16000 20000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Quick Sort
Quick_Insert Sort

Radix Sort
Radix_Insert Sort

 0
 2
 4
 6
 8

 10
 12

 0 250 500 750 1000

First 1000 Queries

(a) Comparing Different Sort Algorithms

 1

 10

 100

Radix_Insert Sort + Index Creation

A
cc

um
ul

at
ed

 T
im

e
[s

]

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b) Indexing Effort of Diff. Indexes

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Binary Search
AVL-Tree

B+Tree
B+Tree (bulk loaded)

ART

(c) Per-Query Response Time of Diff. Indexes
Fig. 11 Comparing Standard Cracking with Different Sort and Index Baselines

ure 10 to a dataset containing 1 billion entries. As we want
to inspect how well the methods scale with the data size,
Table 2 shows the factor of increase in time when switch-
ing from 100 million to 1 billion entries. For an increase
in data size by factor 10, an algorithm that scales linearly
is 10 times slower. Obviously, all tested methods scale very
well. As expected, only nearby clustering suffers from larger
partitions which exceed the cache size by far. Overall, we
see that coarse-granular index offers more robust query per-
formance both over arbitrary selection predicates as well as
over arbitrary projection attributes.

Table 2 Scalability under Datasize Increase by Factor 10

FACTOR SLOWER (FROM 100M to 1B) INITIALIZATION REMAINING TOTAL

STANDARD CRACKING 10.01 9.92 9.93
STOCHASTIC CRACKING (MDD1R) 12.92 9.57 9.75
COARSE GRANULAR INDEX 10 11.73 9.92 10.56
COARSE GRANULAR INDEX 100 11.72 9.81 10.79
COARSE GRANULAR INDEX 1K 11.69 9.96 11.09
COARSE GRANULAR INDEX 10K 11.31 9.94 10.95
COARSE GRANULAR INDEX 100K 10.90 10.02 10.73
FULL INDEX 11.48 9.97 11.29

SIDEWAYS CRACKING - - 11.92
COVERED CRACKING - - 9.98
COARSE GRANULAR INDEX 100 (NEARBY CLUSTERED) - - 11.64
COARSE GRANULAR INDEX 1K (NEARBY CLUSTERED) - - 13.33

Finally, Table 3 classifies the three cracking extensions dis-
cussed above — buffered swapping, covered cracking, and
coarse-granular index — along the same dimensions as dis-
cussed in Section 2.6. Please note that the entry of coarse-
granular index classifies only the initial partitioning step as
it can be combined with various other cracking methods as
well.

Table 3 Classification of Extended Cracking Algorithms.

DIMENSIONS CATEGORY NO
INDEX

BUFFERED
SWAPPING

COVERED
CRACKING

COARSE
GRANULAR
INDEX

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

4 Extending Cracking Experiments

In this section, we compare cracking with different sort and
index baselines in detail. Our goal here is to understand how
good or bad cracking is in comparison to different full index-
ing techniques. In the following, we first consider different
sort algorithms, then different index structures, and finally
the effect of query selectivity.

4.1 Extending Sorting Baselines

The typical baseline used in previous cracking works was a
full index wherein the data is fully sorted using quick sort
and queries are processed using binary search to find the
qualifying tuples. Sorting is an expensive operation and as a
result the first fully sorted query is up to 30 times slower than
the first cracking query (See Figure 2(b)). So let us consider
different sort algorithms.

Quick sort is a reasonably good (and cache-friendly) al-
gorithm, better than other value-based sort algorithms such
as insertion sort and merge sort. But what about radix-based
sort algorithms [12]? We compared quick sort with an in-
place radix sort implementation [5]. This recursive radix
sort implementation switches to insertion sort (lets call this
radix-insert) when the run length becomes smaller than 64.
We applied a similar switching to quick sort as well (lets call
it quick-insert). Figure 11(a) shows the accumulated query
response times for binary search in combination with several
sorting algorithms. We compare these with standard crack-
ing and hybrid crack sort. The initialization times (i.e. the
time to sort) for quick sort, quick-insert sort, and pure radix
sort around 10 seconds are included in the first query. How-
ever, the initialization time for radix-insert sort drops by
half to around 5 seconds. As a result, the first query with
radix-insert is only 14 times slower, compared to 30 times
slower with quick sort, than the first standard cracking query.
Furthermore, we can clearly identify the number of queries
at which one methods pays off over another. Already after
600 queries radix-insert sort shows the smaller accumulated
query response times than standard cracking. For the two
quick sort variants it takes 12,000 queries to beat standard
cracking.

14 Felix Martin Schuhknecht et al.

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(a) Accumulated Query Response Time

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

A
cc

um
ul

at
ed

 In
de

xi
ng

 T
im

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b) Accumulated Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100A
cc

um
ul

at
ed

 In
de

x
Lo

ok
up

 +
 D

at
a

A
cc

es
s

T
im

e
[m

s]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

Data Access

(c) Acc. Index Lookup + Data Access Time
Fig. 12 Comparing Standard Cracking with Index Baselines while Varying Selectivity (Note that: (a) = (b) + (c))

4.2 Extending Index Baselines

Let us now consider different index structures and contrast
them with simple binary search on sorted data. The goal is
to see whether or not it makes sense to use a sophisticated
index structure as a baseline for cracking. We consider three
index structures: (i) AVL-Tree [2], (ii) B+-Tree [4], and
(iii) the very recently proposed ART [20]. We choose ART
since it outperforms other main-memory optimized search
trees such as CSB+-Tree [24] and FAST [19].

Let us first see the total indexing effort of different in-
dexing methods over 1000 queries. For binary search, we
simply sort the data (radix insert sort) while for other full
indexing methods (i.e. AVL-Tree, B+-Tree, and ART) we
load the data into an index structure in addition to sorting
(radix insert sort). Standard cracking self-distributes the in-
dexing effort over the 1, 000 queries while the remaining
methods perform their sorting and indexing work in the first
query. For the B+-Tree we present two different variants:
one that is bulk loaded and one that is tuple-wise loaded.
Figure 11(b) shows the results. We can see that AVL-Tree
is the most expensive while standard cracking is the least
expensive in terms of indexing effort. The indexing efforts
of binary search and B+-Tree (bulk loaded) are very close
to standard cracking. However, the other B+-Tree as well as
ART do more indexing effort, since both of them load the in-
dex tuple-by-tuple7. The key thing to note here is that bulk
loading an index structure adds only a small overhead to the
pure sorting. Let us now see the query performance of the
different index structures. Figure 11(c) shows the per-query
response times of different indexing methods. Surprisingly,
we see that using a different index structure has barely an
impact on query performance. This is contrary to what we
expected and in the following let us understand this in more
detail.

7 The available ART implementation does not support bulk loading.

4.3 Effect of Varying Selectivity

To better understand this effect let us now vary the tuple
selectivity of queries. Recall that we used a selectivity of
1% in all previous experiments. Selectivity is given as frac-
tion of all entries. Figure 12(a) shows the accumulated query
response times of different methods when varying the selec-
tivity. We can see that the accumulated query response times
change over varying selectivity for standard cracking, binary
search, B+-Tree (bulk loaded), and ART. However, there is
little relative difference between these methods over differ-
ent selectivities. To dig deeper, let us split the query response
time into two components: (i) the indexing costs to sort the
data and to build the structure, and (ii) the index lookup and
data access costs to retrieve the result.

Figure 12(b) shows the accumulated indexing time for
different methods when varying selectivity. Obviously, the
indexing time is constant for all full indexing methods.
However, the total indexing time of standard cracking
changes over varying query selectivity. In fact, the index-
ing effort of standard cracking decreases by 45% when the
selectivity changes from 10−5 to 10−1. As a result, the in-
dexing effort by standard cracking surpasses even the effort
of binary search (more than 18%) and B+-Tree (bulk loaded)
(more than 5%), both based on radix insert sort for as lit-
tle as 1, 000 queries. The reason standard cracking depends
on selectivity is that with high selectivity the two partition
boundaries of a range query are located close together and
the index refinement per query is small. As a result several
data items are shuffled repeatedly over and over again. This
increases the overall indexing effort as well as the time to
converge to a full index.

Figure 12(c) shows the accumulated index lookup and
data access costs of different methods over varying selectiv-
ity. We can see that the difference in the querying costs of
different methods grows for higher selectivity. For instance,
AVL-Tree is more than 5 times slower than ART for a se-
lectivity of 10−8. We also see that standard cracking is the
most lightweight method in terms of the index lookup and
data access costs and is closely followed by ART. However,
for high selectivities, the index lookup and data access costs

An Experimental Evaluation and Analysis of Database Cracking 15

are small compared to the indexing costs. As a result, the dif-
ference in the index lookup and data access costs of different
methods is not reflected in the total costs in Figure 12(a).

To conclude, the take-away message from this sec-
tion is three-fold: (i) using a better index structure makes
sense only for very high selectivities, e.g. one in a million,
(ii) cracking depends on query selectivity in terms of in-
dexing effort, and (ii) although cracking creates the indexes
adaptively, it still needs to catch up with full indexing in
terms of the quality of the index.

4.4 Effect of Varying Cracking Depth

The cracking algorithms tested so far reorganize the cracker
column till the fully sorted state is reached. However, the au-
thors of [17] suggested in their original work, that it might
make sense to stop further reorganization at a certain par-
tition size and filter the partitions instead. Thus, in the fol-
lowing experiment, we vary the threshold at which we stop
applying standard cracking and inspect the effect on the
runtime. Figure 13 shows the results. We present the ac-
cumulated query response time over our query sequence of
1000 queries and split the bars into indexing time, represent-
ing the time to reorganize the partition(s), and index lookup
with data access time, representing the query result compu-
tation. This result computation corresponds to a simple scan
if the column has been cracked by this query or a scan with a
filtering, if no cracking has been performed previously. The
threshold at which we stop cracking is varied from 16, 000

(250KB) to 256, 000 (4000KB) entries. In Figure 13 we can
observe that a threshold larger than 64, 000 entries has a
clear impact on the accumulated query response time. The
larger the threshold, the smaller is the indexing time as less
cracking effort is needed. As a consequence of the reduced
indexing effort, the querying time increases due to the ad-
ditional filtering. Unfortunately, the savings in indexing ef-
fort are eclipsed by the larger increase in querying time. As
a result, the overall runtime increases. Therefore, stopping
cracking at a certain partition size and applying filtering
does not improve performance.

4.5 Effect of Query Access Pattern

So far, all experiments applied a uniform random access pat-
tern to test the methods. However, in reality, queries are
often logically connected with each other and follow cer-
tain non-random and non-uniform patterns. To evaluate the
methods under such patterns, we pick two representatives:
the sequential access pattern and the skewed access pattern.
We create the sequential access pattern as follows: start-
ing from the beginning of the value domain, the queried
range is moved for each query by half of its size towards

 0

 2

 4

 6

 8

 10

Standard

16K
32K

64K
128K

256K

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Partition Size (# Entries)

Indexing Time
Index Lookup + Data Access Time

Fig. 13 Stopping cracking at a certain partition size.

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

P
re

di
ca

te
 R

an
ge

Predicate Sequence

Sequential Predicates

(a) Sequential Pattern

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

P
re

di
ca

te
 R

an
ge

Predicate Sequence

Skewed Predicates (Alpha = 2.0)

(b) Skewed Pattern
Fig. 14 Generated Predicates for Different Access Pattern

the end of the domain to guarantee overlapping query pred-
icates. When the end is reached, the query range restarts
from the beginning. The position to begin is randomly set
in the first 0.01% of the domain to avoid repetition of the
same sequence in subsequent rounds. Figure 14(a) visual-
izes the generated predicates. In Figure 15(a) we show the
query response time under the sequential access pattern for
standard cracking, stochastic cracking, coarse-granular in-
dex with 1,000 partitions, and hybrid crack sort. We can
clearly separate the figure into the first 200 queries and
the remaining 800 queries. As the selectivity is 1% and the
query range moves by half of its size per query, it takes 200
queries until the entire data set has been accessed. Within
that period the query response time of standard cracking
and hybrid crack sort decreases only gradually. Large parts
of the data are scanned repeatedly and the unindexed upper
part decreases only slightly per query. Furthermore, hybrid
crack sort is considerably slower than standard cracking in
this phase. Stochastic cracking reduces this problem signif-
icantly by applying additional splits to the unindexed upper
area. Coarse-granular index shows the most stable perfor-
mance. After the initial partitioning in the first query, the
query response time does not significantly vary. Addition-
ally, the query response time is the lowest of all methods
(except for the first query). For the remaining 800 queries the
performance differences between all methods decrease as
the entire data set has been queried and is therefore cracked
more or less. Now, stochastic cracking is slower than stan-
dard cracking as the additional effort of random cracking

16 Felix Martin Schuhknecht et al.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(a) Sequential Access Pattern

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(b) Skewed Access Pattern

 0

 10

 20

 30

 40

 50

Sequential Skewed

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

] Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(c) Accumulated Query Response Times
Fig. 15 Effect of Query Access Pattern on Adaptive Methods

and materializing the result is no more necessary to provide
a decent performance.

Finally, let us investigate how the methods perform un-
der a skewed access pattern. We create the skewed access
pattern in the following way: first, a zipfian distribution is
generated over n values, where n corresponds to the num-
ber of queries. Based on that distribution the domain around
the hotspot, which is the middle of the domain in our case,
is divided into n parts. After that the query predicates are
set according to the frequencies in the distribution. The k
values with the l highest frequency in the distribution lead
to k query predicates lying in the l-th nearest area around
the hotspot. Figure 14(b) shows the generated predicates for
α = 2.0. These predicates are randomly shuffled before
they are used in the query sequence. Figure 15(b) shows
the query response time for the skewed pattern. We can ob-
serve a high variance in all methods except coarse-granular
index. Between accessing the hotspot area and regions that
are far off, the query response time varies by almost 3 or-
ders of magnitude. Early on, all methods index the hotspot
area heavily as most query predicates fall into that region.
Stochastic cracking manages to reduce the negative impact
of predicates that are far off the hotspot area. However, it is
slower than standard cracking if the hotspot area is hit. Hy-
brid crack sort copies the hotspot area early on to its final
partition and exhibits the fastest query response times in the
best case. However, if a predicate requests a region that has
not been queried before, copying from the initial partitions
to the final partition is expensive.

Finally, Figure 15(c) shows the accumulated query re-
sponse time for both sequential and skewed access patterns.
Obviously handling sequential patterns is challenging for all
adaptive methods. Especially hybrid crack sort suffers from
large repetitive scans in all initial partitions and is therefore
by far the slowest method in this scenario. Stochastic crack-
ing (MDD1R) manages to reduce the problems of standard
cracking significantly and fulfills its purpose by providing a
workload robust query answering. In total, coarse-granular
index is the fastest method under this pattern. Overall, for
the skewed access pattern the difference between the meth-
ods is significantly smaller than for the sequential pattern.

5 Parallelising Cracking Algorithms

So far, we looked entirely at single-threaded implementa-
tions of cracking algorithms, sorting methods and index
structures (Table 4). However, nowadays, with commodity
hardware offering multiple hardware threads and server ma-
chines easily consisting of several multi-core processors,
parallelizing an algorithm is crucial for efficiency. Thus, in
the following section we investigate the current state-of-the-
art parallel cracking algorithms and identify their strengths
and weaknesses.

5.1 Parallel Cracking Methods

In general, parallel query processing can be realized in
two ways: (1) inter-query parallelism, which interleaves
the execution of multiple queries while isolating them
semantically, and (2) intra-query parallelism, which se-
rializes the answering of the query sequence while each
individual query is evaluated in parallel. In the following,
let us look at the main representatives of these two classes
of parallelism. Table 5 gives an overview alongside with
their initial sources and used abbreviations. To the best
of our knowledge, these algorithms form the complete set
of parallel cracking algorithms known to date. Obviously,
many of the methods originate from our own study on
parallel adaptive indexing techniques [3], that was the
follow-up work of the paper that this article extends. Thus,
we use this chance to combine both works and reevaluate
the methods under a new setup as well as in comparison
to new methods. Let us now look at the different parallel
algorithms in detail.

Parallel standard cracking (P-SC): interleave answering
of multiple queries in isolation by serialising crack-in-two
on the granularity of partitions.
A very natural form of inter-query parallelism is realized
in parallel standard-cracking [8, 9], denoted as P-SC from
here on. It is based on the observation that a query modifies
at most two partitions of the cracker column. Thus, if
we want to execute multiple queries at the same time on

An Experimental Evaluation and Analysis of Database Cracking 17

Table 4 All single-threaded algorithms evaluated in this paper.

Algorithm Reference
Standard cracking [17]
Predication/Vectorized cracking [23]
Hybrid crack/radix/sort sort [16]
Buffered swapping this paper resp. [25]
Stochastic cracking (MDD1R) [11]
Coarse-granular Index this paper resp. [25]
Sideways cracking, Covered cracking [15], this paper resp. [25]
Sorting: Quick(insert) sort, Radix(insert) [13], [12]
Full Index: AVL-tree, B+-tree, ART [2], [4], [20]

Table 5 All multi-threaded algorithms evaluated in this paper.

Algorithm Abbreviation Reference
Parallel standard cracking P-SC [8, 9]
Parallel coarse-granular index P-CGI [3]
Parallel-chunked standard cracking P-CSC [3]
Parallel-chunked vectorized cracking P-CVC variant of [23]
Parallel-chunked coarse-granular index P-CCGI [3]
Parallel range-partitioned radix sort P-RPRS [3]
Parallel-chunked radix sort P-CRS [3]

Parallel sideways cracking (with P-CSC) P-SW-CSC this paper
Parallel sideways cracking (with P-CCGI) P-SW-CCGI this paper
Parallel range-partitioned radix sort P-PC-RPRS this paper
(cluster complete)
Parallel range-partitioned radix sort P-LC-RPRS this paper
(cluster lazy)

the same cracker column, all we have to do is serializing
the cracking of partitions. To do so, the authors of [8, 9]
introduce read and write locks on the partition level. An
incoming query, running in its own thread, tries to acquire
(at most two) write locks for the partitions at the border, that
it has to crack, and read locks for the inner partitions. Since
acquiring write locks is exclusive, only one query at a time
can modify a certain partition. Similar to the single threaded
case, we can apply the concept of coarse-granular index to
P-SC as well. To do so, the first query applies the lock-free
parallel range-partitioning algorithm we used in our study
on parallel cracking algorithms [3] before starting the ac-
tual query answering. We will refer to this method as P-CGI.

Parallel coarse-granular index (P-CGI): apply a paral-
lel range partitioning to bulk-load the cracker index before
starting the query answering using P-SC.

Obviously, for P-SC and P-CGI, the degree of paral-
lelism highly depends on the current cracking state of the
cracker column and on the query access pattern. Thus, the
following algorithm, that we introduced in [3], implements
the parallelism inside the answering of a single query to cre-
ate a more stable parallel execution over the query sequence.

Parallel-chunked standard cracking (P-CSC): divide the
cracker column non-semantically into independent chunks
and apply standard cracking on each chunk in parallel.
The concept of parallel-chunked standard cracking [3],
denoted P-CSC from here on, is as simple as effective.
We divide the column logically into multiple chunks and
treat each chunk as a separate cracker column with its

own cracker index. The incoming queries are executed
sequentially within the query burst while each individual
query is evaluated on all chunks in parallel. Thus, each
chunk is cracked individually and produces a local query
result. When all threads finish the evaluation of the query
locally, the global result can be computed. As there is almost
no communication or synchronization necessary during
cracking and result computation, this method naturally
offers a high degree of parallelism from the very first query
on. The same concept has been used in [23] in combination
with vectorized cracking. Thus, we also test a vectorized
version, denoted as P-CVC8 from here on. Of course, the
concept of work division can be applied to more advanced
cracking algorithms as well. Since our coarse-granular
indexing method offers an interesting alternative to the
standard version, we also test our chunked implementation
of parallel coarse-granular index, that we first introduced
in [3].

Parallel-chunked coarse-granular index (P-CCGI): di-
vide the cracker column non-semantically into multiple in-
dependent chunks and apply coarse-granular index on each
chunk in parallel. Then, apply standard cracking locally for
the query answering.
The concept remains the same. The only difference to P-
CSC is an initial step of range-partitioning within each
chunk as performed by the single-threaded coarse-granular
index. After that, the single-threaded standard cracking is
used in each chunk for the local result computation. We will
call this method from here on P-CCGI [3].

In comparison to the different multi-threaded cracking
versions, we test our two parallel radix based sorting meth-
ods from [3]. The first version, called P-RPRS, applies first
a parallel range-partitioning and then sorts the partitions lo-
cally in parallel using a single threaded radix sort. The sec-
ond version, denoted P-CRS from here on, chunks the input
non-semantically and then applies single-threaded range-
partitioning and radix sort on each chunk in parallel.

5.2 Hardware Setup

For the multithreading experiments, we use a high-end
server of 4 sockets, each equipped with an Intel Xeon E7-
4870 v2 processor with 15 physical and 30 logical cores,
running at 2.3 GHz. Therefore, the machine has 60 physical
and 120 logical cores available. The overclocking capabil-
ities of the processors (Intel Turbo Mode) are disabled for
all experiments, as they unnecessarily complicate the analy-
sis. The private L1 and L2 caches of each core have a size
of 32 KB and 256 KB respectively, while the shared L3

8 In contrast to [23], we do not merge the chunks after each query
as this results in overhead.

18 Felix Martin Schuhknecht et al.

50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms

65.3

65.3

65.3

65.3

Fig. 16 Stream Benchmark with 60 threads. We can reach 65 GB/s per
socket for the aggregated read/write bandwidth per socket.

cache of each processor has a size of 30 MB. Each pro-
cessor has 3 QPI links such that remote memory access
is equally expensive for all neighboring processors. Each
socket is attached to 128 GB of 1600 MHz DDR3 RAM
running in Intel Performance Mode, resulting in 512 GB
of available main memory. The operating system is a 64-bit
Debian with kernel version 3.2. As the memory bandwidth
plays an important role in the following discussion, we mea-
sured the throughput of the machine using the STREAM
benchmark [22], that runs a set of simple read/write vector
kernels. Instead of relying on the computed bandwidth of
the benchmark, we measured the throughput directly at the
memory controller using Intel VTune Amplifier 2015. Fig-
ure 16 shows the aggregated bandwidth for all 4 sockets. As
we can see, we reach 65 GB/s per socket and thus achieve a
total machine bandwidth of 260 GB/s.

5.3 Experimental Setup

Before we can start with any experimental evaluation, let us
define the way in which the queries are fired and executed.
As in previous experiments, we have a set of 1000 queries
that should be answered as fast as possible. All queries are
directly ready to be processed and there is no artificial idle
time introduced between queries. Depending on the type
of the algorithms, this query batch is processed differently.
For algorithms that perform inter-query-parallelism, like P-
SC for instance, we divide the set of queries into k parts,
which are processed using k threads with each thread work-
ing 1000/k queries sequentially. This resembles the way of
firing queries in [8]. In contrast, for algorithms that perform
intra-query parallelism, like P-CSC, the 1000 queries will
be answered sequentially one after another. However, each
individual query is answered by k threads in parallel on a
portion of the data. Please note that to get a more realistic
setup, we introduced a barrier in the query execution loop:
the answering of the next query starts only after all threads
completed the current one.

5.4 Scaling of Parallel Cracking Algorithms

In Section 5.1, we described the set of algorithms for par-
allelizing database cracking. As mentioned before, many of
these algorithms originate from our earlier study on paral-
lel adaptive indexing [3]. In that work, we studied both the
absolute runtimes and the scalability of the parallel cracking

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_SC_M: Cracking (8 Threads) P_SC_M: Querying (8 Threads)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_SC_M: Cracking (8 Threads) P_SC_M: Querying (8 Threads)

(a) Parallel Standard Cracking (P-SC)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_CGI_M: Cracking (8 Threads) P_CGI_M: Querying (8 Threads)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_CGI_M: Cracking (8 Threads) P_CGI_M: Querying (8 Threads)

(b) Parallel Coarse-granular Index (P-CGI)
Fig. 17 Visualization of the partition processing contention for
8 threads. A rectangle [x1, y1, x2, y2] means that within the time from
x1 to x2, a thread was processing the cracker column at the range y1
to y2. Processing also includes wait times to acquire a lock. A red
square indicates a writing process (cracking a partition) while a green
square visualizes a reading process (querying a partition). Overlapping
squares indicate that multiple threads intent to work on the same area
of the cracker column at the same time.

algorithms. In this paper, we revisit the scalability of paral-
lel cracking algorithms in depth. To do this, we extend the
parallel cracking experiments in two ways. First, in contrast
to our previous study, that used a low-end server with only
8 cores, we now use a massively parallel high-end machine
consisting of 4 sockets and 60 physical respectively 120 log-
ical cores (see Section 5.2 for a detailed description of the
hardware). We believe that it is valuable to reevaluate these
techniques under a vastly different setup to get possibly new
insights from them. Second, we dig into and analyze the per-
formance of parallel cracking by looking at contention and
bandwidth using Intel VTune Amplifier. Our goal is to un-
derstand and explain the scalability of parallel cracking al-
gorithms in a massively parallel environment.
Besides the raw query processing times of different al-
gorithms, parallel methods offer another important dimen-
sion to analyze: the capabilities to scale with the multi-

An Experimental Evaluation and Analysis of Database Cracking 19

 0

 1

 2

 3

 4

 5

 6

 7

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
S

ta
nd

ar
d

C
ra

ck
in

g
(1

 T
hr

ea
d)

(a) Parallel Standard Cracking
(P-SC)

 0

 2

 4

 6

 8

 10

 12

 14

 16

Range Par. Query Answ. Total

S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d)

(b) Parallel Coarse-granular
Index (P-CGI)

 0

 5

 10

 15

 20

 25

 30

 35

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
S

ta
nd

ar
d

C
ra

ck
in

g
(1

 T
hr

ea
d)

(c) Parallel-chunked
Standard Cracking (P-CSC)

 0

 5

 10

 15

 20

 25

 30

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
V

ec
to

riz
ed

 C
ra

ck
in

g
(1

 T
hr

ea
d)

(d) Parallel-chunked
Vectorized Cracking (P-CVC)

 0

 5

 10

 15

 20

 25

Range Par. Query Answ. Total

S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d) (4 Threads)
(8 Threads)

(15 Threads)

(30 Threads)
(45 Threads)
(60 Threads)

(120 Threads)

(e) Parallel-chunked Coarse
-granular Index (P-CCGI)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Range Par. Sorting Query Answ. Total

S
pe

ed
up

 o
ve

r
R

ad
ix

 S
or

t (
1

T
hr

ea
d)

(f) Parallel Range-partitioned
Radix Sort (P-RPRS)

 0

 10

 20

 30

 40

 50

 60

 70

Range Par. Sorting Query Answ. Total

S
pe

ed
up

 o
ve

r
R

ad
ix

 S
or

t (
1

T
hr

ea
d)

(g) Parallel-chunked
Radix Sort (P-CRS)

 0

 2

 4

 6

 8

 10

 12

14 8 15 30 45 60 120

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Chunks

Parallel-chunked Standard Cracking (P_CSC)
Parallel-chunked Coarse-granular Index (P_CCGI)

Parallel-chunked Radix Sort (P_CRS)

(h) Serial execution of chunked
algorithms

Fig. 18 Speedup of parallel cracking and sorting algorithms over their single-threaded counterparts while varying the number of threads. We show
both the speedups of the characteristic phases as well as the overall achieved speedups. Colored horizontal lines show the expected perfect linear
speedup. In Figure 18(h), we show for the chunked algorithms how the chunking itself influences the methods by serially working the chunks.

threading resources of the hardware. An algorithm, which
scales poorly might be the winner in terms of runtime on
a small machine, but completely looses the pace on a large
server. Therefore, in the following we will inspect for each
method individually how it scales with an increase of the
number of threads. We run each method using 4, 8, and
15 threads to utilize the computing cores up to 1

4 -th of
the machine. Additionally, we test 30, 45, and 60 threads
to investigate the scaling over the sockets. Finally, we run
120 threads to utilize all logical cores of the machine as
well. We do not apply any form of thread pinning and let
the operating system decide.

Figure 18 presents the accumulated speedups of the al-
gorithms relative to their single-threaded counterparts. We
inspect the individual parts (copying, range-partitioning,
sorting, query answering) of the methods to analyze them
separately as well as the total speedup. Let us go through
the methods one by one and analyze their scalability.

Parallel standard cracking (P-SC): Figure 18(a) presents
the scaling capabilities of the well known, lock-based P-SC.
Unfortunately, it scales poorly with the increasing number of
threads. The highest total speedup we observe is around 3.7x
for 120 threads. The situation is particularly bad in the early
phase of the query answering as the measured speedups are
only between 1.5x and 2x. To understand this scaling prob-
lem, let us visualize the processing behavior of the algo-
rithm. To do so, each time a thread is processing a parti-
tion, we log the time it takes as well as the processed area
in the cracker column. This time includes possible waiting
to acquire locks as well as the actual data processing. Fig-
ure 17 shows the plotted result. A rectangle [x1, y2, x2, y2]

means that within the time from x1 to x2, a thread was pro-
cessing the cracker column at the range y1 to y2. The col-
ors indicate the processing type, where red is modifying ac-
cess (cracking) and green reading access (querying). Fig-
ure 17(a) presents the results for P-SC for 8 threads. We can
observe a severe access contention in the first half of the run.
The early queries lock huge parts of the cracker column as
there exist only large partitions and thus serialize each other
heavily. Therefore, the algorithm has no chance to scale lin-
early when starting from an unpartitioned state. Thus, let us
see how the problem decreases when prepending a range-
partitioning step in the next algorithm.

Parallel coarse-granular index (P-CGI): As described be-
fore, this algorithm extends P-SC by applying an initial par-
allelized range-partitioning step, that creates 1024 partitions
right away before any query answering starts. This should
have a positive effect on P-SC and significantly reduce
the contention that we have measured before. Figure 17(b)
presents again the partition processing contention, this time
for P-CGI. The blank space between time 0s and 0.7s is the
range-partitioning phase. Afterwards, we see from 0.7s till
1.2s the actual query answering, which indeed parallelizes
nicely now. No heavy contention is visible anymore and
the algorithm behaves as intended, as the partitions are al-
ready small and the chance of two threads accessing the
same partition is small. This is confirmed by the scaling fac-
tors of the P-CGI query answering phase in Figure 18(b),
which now reaches a factor of 11x for 45 threads. For more
threads, the performance significantly drops again, as access
contention (both on the column as well as on the protected
cracker index) throttles the throughput again. Figure 19(a)

20 Felix Martin Schuhknecht et al.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d)

Query Sequence

(4 Threads)
(8 Threads)

(15 Threads)
(30 Threads)

(45 Threads)
(60 Threads)

(120 Threads)

(a) Scaling of Parallel-chunked Standard Cracking (P-CGI) of the
query answering phase without the range-partitioning phase.

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms

53.2

53.2

53.2

53.2

CPU
Util 4500%

(b) Parallel-chunked Standard Cracking (P-CGI) with 45 threads. High-
est bandwidth observed: 53.25GB/s

Fig. 19 Bandwidth of P-CGI measured at 4 sockets in GB/s. The bot-
tom line shows the CPU utilization in percentage.

presents a query-wise view on the answering phase. We
can see that directly in the first query, the scaling is still
very limited. This is caused by the setup and assignment
of the threads to the tasks, which is expensive in compar-
ison to the short running queries. Additionally, NUMA re-
mote accesses are throttling the query answering phase. As
the parallel range-partitioning algorithms creates partitions
that are scattered across regions, a thread that answers a
query has consequently a large number of remote accesses.
Table 6 shows that based on hardware counters 2 out of
3 accesses are remote for P-CGI. Let us now look at the
range-partitioning itself. For 120 threads, we achieve the
best speedup of factor 15x. Memory bandwidth is clearly
not the problem, as it can be seen in the early phase of Fig-
ure 19(b), where only the histogram generation maximizes
the bandwidth utilization. Our VTune analysis indicates that
the range-partitioning algorithm is heavily back-end bound
by the random-nature of the partitioning. Advanced parti-
tioning techniques like software-managed buffers and non-
temporal streaming stores might improve upon this problem,
as we investigate in a separate study on partitioning [26].

Parallel-chunked standard cracking (P-CSC): After
looking at the inter-parallel version of standard cracking, let
us now inspect the scaling behavior of the intra-parallel ver-
sion named P-CSC. The results are shown in Figure 18(c).
We can see that this algorithms scales considerably bet-
ter than the previous ones, which is what we expect from
a method that parallelizes by chunking. However, we can

Table 6 Number of LLC cache misses that are served
with local respectively remote DRAM access presented in
millions of measured events. The measured counters are
OFFCORE RESPONSE.DEMAND DATA RD.LLC MISS.LOCAL DRAM and
OFFCORE RESPONSE.DEMAND DATA RD.LLC MISS.REMOTE DRAM.

Method Local Accesses [Mio] Remote Accesses [Mio]

P-SC 107 418
P-CGI 99 202
P-CSC 442 0
P-CVC 357 0.2
P-CCGI 44 0.2
P-RPRS 115 230
P-CRS 365 0.6

also observe that the scaling is not linear with the number
of threads. The highest total speedup that we achieve for
120 threads is only around 25x. To understand this behavior,
let us inspect the individual parts. Interestingly, the copy-
ing phase, which simply duplicates the input column into
a separate array, scales particularly bad with a maximum
speedup of 8x. As we can see from the bandwidth plot of
Figure 21(a) for 60 threads, the memory bus is not the lim-
iting factor, which is poorly utilized within the first 150ms.
We identified page faults, which are surprisingly expensive
to resolve when touching the cracker column for the first
time during the copying phase as the cause of this behavior.
Let us now see how the query answering part alone scales
in P-CSC. In Figure 18(c), we see a maximal speedup of the
query answering phase of 33x for 60 threads, which is still
not linear. NUMA effects are not a problem here as we can
see in Table 6, all accesses are local. Apparently, the scal-
ing is limited from 45 threads on, so let us inspect the uti-
lized bandwidth of the query answering phase for 30 threads
(Figure 21(b)), 45 threads (Figure 21(c)), and 60 threads
(Figure 21(d)). We can see that in the early phase the band-
width for 30 threads is with almost 59 GB/s already close
to the cap of 65 GB/s, so we can not expect a linear scaling
when increasing the number of threads by a factor of 1.5x
(45 threads) respectively 2x (60 threads).

From Figure 18(d), we can see that Parallel-chunked
vectorized cracking (P-CVC) shows a very similar scaling
behavior as P-CSC. It scales slightly worse than P-CSC due
to its nature of being even more bandwidth bound.
Parallel-chunked standard cracking (P-CCGI): Let us
now inspect the intra-parallel version of coarse-granular
index in Figure 18(e). Interestingly, the range-partitioning
phase scales almost exactly the same as the one of P-CGI
in Figure 18(b), although the former uses a parallel range-
partitioning while the latter one chunks a single-threaded
implementation. This shows again, that the partitioning is
heavily back-end bound and that stalls throttle the algorithm.
The query answering phase scales with 20x for 60 threads
much better than that of P-CGI. One reason is that each
chunk can be processed individually without any concur-
rency control except the barrier at the end of each query.

An Experimental Evaluation and Analysis of Database Cracking 21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(a) 4 Threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(b) 15 Threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Parallel Standard Cracking (P-SC)
Parallel Coarse-granular Index (P-CGI)

Parallel-chunked Standard Cracking (P-CSC)
Parallel-chunked Vectorized Cracking (P-CVC)

Parallel-chunked Coarse-granular Index (P-CCGI)
Parallel Range-partitioned Radix Sort (P-RPRS)

Parallel-chunked Radix Sort (P-CRS)

(c) 60 Threads
Fig. 20 Accumulated query response time of parallel cracking algorithms in comparison with parallel radix-based sorting methods.

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms

62.7

62.7

62.7

62.7

(a) Parallel-chunked Standard Cracking (P-CSC) with 60 threads. The
initialization phase (copying the data into the cracker column in parallel)
utilizes the bandwidth only partially (around 8GB/s).

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms

58.8

58.8

58.8

58.8

(b) Parallel-chunked Standard Cracking (P-CSC) with 30 threads with-
out initialization phase. Highest bandwidth observed: 58.77GB/s

100ms50ms 150ms 200ms 250ms 300ms

64.0

64.0

64.0

64.0

(c) Parallel-chunked Standard Cracking (P-CSC) with 45 threads with-
out initialization phase. Highest bandwidth observed: 64.02GB/s

100ms50ms 150ms 200ms 250ms 300ms

65.2

65.2

65.2

65.2

(d) Parallel-chunked Standard Cracking (P-CSC) with 60 threads with-
out initialization phase. Highest bandwidth observed: 65.24GB/s
Fig. 21 Bandwidth measured at 4 sockets with Intel VTune Amplifier
2015 in GB/s.

Another reason is the almost perfect NUMA locality, that
we can observe in Table 6.

Parallel-chunked standard cracking (P-RPRS): Finally,
we want to analyze the scaling capabilities of the sort-
ing baselines. Let us start with P-RPRS presented in Fig-
ure 18(f). The initial range-partitioning phase resembles the
one of P-CGI which is why we see exactly the same scaling
behavior. Afterwards, each created partition is sorted indi-
vidually in parallel. Obviously, this phase scales much better
with 45x for 120 threads at best. The reason lies in the great
cache-locality created by the previous range-partitioning.
By dividing the dataset into 1024 pieces, each partition has a
size of 1.49 MB. Since each processor has a L3 cache size of

30 MB and 15 physical cores, each core has basically 2 MB
of cache available (1 MB per logical core). This is obviously
enough to keep all currently worked partitions completely
inside the caches in the case of 60 threads. The scaling of
the query answering phase is at best only 13x for 45 threads.
This is again due to the high number of remote accesses
in Table 6 caused by the initial parallel range-partitioning.
They also have a negative impact on the sorting phase, al-
though the worked partition is loaded once into the cache
and then worked locally.
Parallel-chunked standard cracking (P-CRS): The sec-
ond sorting algorithm, which does not create a global sort-
ing, range-partitions and sorts all chunks locally in parallel.
In the scaling result of Figure 18(g), we can see that the
sorting phase scales even better than in P-RPRS. One rea-
son lies in the NUMA local accesses, as we can see in Ta-
ble 6. Another reason is presented in Figure 18(h). As sort-
ing multiple smaller chunks is by default cheaper than sort-
ing a large one, a part of the speedup also originates from
that. This also causes the super-linear sorting speedup for
30 and 45 threads. The query answering phase of P-CRS
also scales better than the one of P-RPRS due to the NUMA
local processing nature.

5.5 Runtime of Parallel Cracking Algorithms

After investigating the scaling capabilities of the algorithms
on an individual basis, let us see how they compete against
each other. To do so, we measure and compare the accu-
mulated query response time over 1000 queries and present
the results using different thread configurations in Figure 20.
For 4 threads in Figure 20(a), there is a clear difference
in runtime between the individual algorithms visible. Obvi-
ously, P-CSC has the lowest initialization time with almost
0.5s, while the sorting methods need with around 1.7s con-
siderably more time for their first query. Over 1000 queries,
the cracking methods P-CCGI and P-CGI clearly win in
terms of accumulated runtime, while P-SC is far behind
the remaining methods due to its serialization behavior in
the early querying phase. When increasing the number of
threads to 15 in Figure 20(b) and to 60 in Figure 20(c), we

22 Felix Martin Schuhknecht et al.

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(a) 4 Threads: one σ, one π

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Perfect Clustering (P-PC-RPRS)
Lazy Clustering (P-LC-RPRS)

Parallel Sideways Cracking (P-SW-CSC)
Parallel Sideways Cracking (P-SW-CCGI)

(b) 4 Threads: one σ, five π

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(c) 60 Threads: one σ, one π

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(d) 60 Threads: one σ, five π
Fig. 22 Accumulated tuple reconstruction cost for 1000 queries and a
table consisting of 10 columns, shown for 4 and 60 threads. We se-
lect on a single fixed attribute. In Figures 22(a) and 22(c), each query
projects a single randomly chosen attribute. In Figures 22(b) and 22(d),
each query projects five randomly selected attributes.

see a clear trend: the different between the sorting and crack-
ing methods significantly decreases. For 60 threads, the time
of the first query for P-CSC is with 191ms only 46ms shorter
than that of P-CRS, which fully sorts the chunks and an-
swers the first query in 237ms, caused by the superior scal-
ing of the sort-based algorithms. This analysis indicates,
that for a large number of threads, the sorting algorithms
are a clear alternative over the adaptive methods, especially
since they are easier to integrate into the system stack and
offer interesting orders. Nevertheless, we believe that in a
real system with many queries processing several columns
at the same time, only a portion of the physical resources are
available to initialize a column. Under such circumstances,
cracking remains its advantage of offering the significantly
cheapest option of enabling indexing.

5.6 Tuple Reconstruction in the Context of Parallelism

So far, we have looked at the parallel indexing methods
without considering tuple reconstruction in order to focus
solely on the cracking and sorting algorithms. Now, let us
see how the tuple reconstruction concepts we have seen
already in the single-threaded case, like Sideways Crack-
ing [15], can be applied on top of multi-threaded algorithms.
Precisely, we will investigate how Sideways Cracking can be
combined with parallel cracking algorithms. To the best of
our knowledge, this is the first work to approach this ques-
tion. Then, we will compare the tuple reconstruction perfor-
mance of the parallel cracking algorithms with a clustered
table that has been ordered with respect to the sorted index
column using our parallel range-partitioned radix sort. As
the basis for parallel sideways cracking, we pick the two

cracking algorithms that performed the best in the previous
evaluation — P-CSC and P-CCGI. This allows us to apply
the concept of chunking to Sideways Cracking as well. For
each chunk, we keep separate cracker maps and a separate
tape and thus, the chunks can be worked independently by
the individual threads. We name these two methods P-SW-
CSC respectively P-SW-CCGI in the following. The base-
line for parallel sideways cracking is formed by a clustered
table, that can be created in two ways. The first version,
coined P-PC-RPRS, clusters the entire table (stored in col-
umn layout) directly in the first query with respect to the
selection column. The sorting is performed using our paral-
lel range-partitioned radix sort. The second version, called
P-LC-RPRS, establishes the clustering in a lazy manner, by
copying and clustering only the columns that are actually
touched by a query. In this case, the clustering of a column is
created by applying a fresh sort on the selection column. To
put these methods to the test, we apply different workloads.
All share the property that the selection is performed on a
single, fixed attribute of a table composed of 10 columns
following a uniform random distribution. We perform sepa-
rate runs projecting 1 and 5 attributes respectively, that are
randomly selected for each query. Figure 22 shows the ac-
cumulated query response times for 4 and 60 threads. Let
us focus on the 4 threaded case first in Figures 22(a) and
22(b). For all numbers of projected attributes, P-PC-RPRS
behaves in the most predictable way. Clustering the entire
table of 10 columns takes around 11 seconds and the fol-
lowing query answering takes only a small amount of addi-
tional time, even if 5 attributes are projected. P-LC-RPRS,
which clusters a column when it is touched for the first time
is heavily affected by the number of projected attributes. In-
terestingly, the larger the number of projected attributes, the
smaller is the accumulated query response time. This makes
sense as a query projecting multiple attributes can cluster
multiple columns in a single sorting run. We can also ob-
serve, that the lazy clustering pays off only for the first few
queries, at least for a table consisting of only 10 columns. In
comparison to that, parallel sideways cracking offers in both
implementations a significantly smaller initialization time.
The first query of P-SW-CCGI is slightly more expensive
than that of P-SW-CSC, as it range partitions the dataset
during the initialization of a cracker map. In the long run,
it always clearly pays off to prepend a range-partitioning
step. Overall, for 4 threads and 1000 queries, P-SW-CCGI
shows the best accumulated runtime in all tested cases. This
picture changes if we switch to 60 threads in Figures 22(c)
and 22(d). Obviously, all methods benefit from the increased
number of threads, however, the sort based methods win
at a higher degree. Obviously, the better scaling capabili-
ties of the sort based methods that we saw in the previous
analysis pay off in the tuple reconstruction case as well.
P-PC-RPRS needs less than 10 queries to beat both Paral-

An Experimental Evaluation and Analysis of Database Cracking 23

lel Sideway Cracking implementations. The difference be-
tween the lazy P-LC-RPRS and P-PC-RPRS has also sig-
nificantly decreased and even P-LC-RPRS outperforms P-
SW-CSC around 40 queries for 1 projected attribute and
8 queries for 5 projections. Overall, we see the same trend
as before: the more threads available, the more the advan-
tage shifts to the sorting side. Still, if only few threads are
available for the initialization step, parallel sideways crack-
ing shows a significantly smaller preparation time. Further,
for tables consisting of multiple hundreds of attributes, only
on-demand initialization of columns is a viable option, as
offered by parallel sideways cracking.

5.7 Skew in the Context of Parallelism

Up to this point, we evaluated the parallel methods under a
uniformly distributed random workload on top of uniformly
distributed data. In the following, we will investigate how
different kinds of skewness affect the parallelism. We will
test both skewed query predicates as well as skewed in-
put data. Furthermore, we cluster the input data into range-
partitions and inspect the impact on the methods. Precisely,
we run the following configurations independently:

1. The query predicates follow a normal distribution with
mean µ = 263 (middle of the domain). The deviation is
varied from σ = 258 (high skew) to σ = 262 (low skew).
This pattern simulates a high interest in certain keys.

2. The keys of the input data follow a normal distribution
with mean µ = 263 (middle of the domain). The devi-
ation is varied from σ = 258 (high skew) to σ = 262

(low skew). This pattern simulates a higher appearance
frequency of certain keys.

3. The keys of the input data follow a uniform distribution.
However, the input is physically clustered into k uniform
range-partitions. We test a low clustering using k = 4

and a high one using k = 60. This pattern simulates
data where the key locality resembles physical locality,
typically the case for sensor or financial data.

Figure 23 shows the results in form of speedup factors, that
different methods achieve when switching from the uni-
formly random distributed data and queries seen so far to
the respective form of skewness. A factor below 1 indicates
a speedup. We compare the runtimes of the entire query se-
quence of 1000 queries. Figure 23(a) shows the influence of
skewed query predicates on the methods. We can observe
that only P-SC is affected negatively by the skew with a
slowdown of up to 1.2x, interestingly even the low skew
triggers it. All remaining methods improve with a higher
selectivity by factors between 0.67x (P-CSC) and 0.91x (P-
CGI) for a deviation of 258. P-SC suffers from the focus
on a certain data region due to a higher lock contention,
P-CGI can outweigh this problem with the initial range-
partitioning. The remaining algorithms exploit the denser

access locality that result in more fine granular cracks and
a better cache utilization. The parallelism of the chunked al-
gorithms is not affected at all by the skewed predicates as
the work balance remains the same. Figure 23(b) presents
the impact of skewed input data. As we can see, this has a
more severe influence on some of the methods. P-SC and
especially P-RPRS are heavily slowed down by a factor of
2.10x and 6.42x respectively for the highest skewness. P-
SC suffers from the fact that queries falling into the skewed
region work on a larger part of the column and thus limit
the amount of possible parallelism. P-RPRS has the problem
that the range-partitioning phase creates partitions of unbal-
anced size and thus, the following sorting work is unequally
divided among the threads. The creation of equi-depth parti-
tions could help here, however, we leave this to future work.
Again, the chunked methods are completely unaffected by
this type of skew. However, the picture changes when data
clustering is introduced in Figure 23(c). We test a lower clus-
tering of 4 partitions and a heavy clustering of 60 partitions.
Under these circumstances, the chunked algorithms experi-
ence a severe slowdown. The pre-clustered input leads to an
unbalanced work division, as only some of the chunks con-
tain data that is relevant for the query. P-CSC suffers the
most, as its entire behavior is query driven and thus influ-
enced by the clustering. For P-CCGI and P-CRS, at least
the range-partitioning and sorting is query independent and
thus balances well. To resolve this problem, a cluster-aware
chunk division would be necessary, e.g. as proposed in [6].
However, this is left for future work.

Overall, we learned that the chunked methods are com-
pletely resilient to both skewed queries and input. However,
in their current state, they have severe problems in handling
clustered input. P-RPRS suffers from skewed input as the
range-partitioning phase creates equi-width partitions that
do not balance the sorting work. P-SC reacts negatively to
both skewed input and queries due to the higher contention.

6 Lessons Learned & Conclusion

Let us now put together the major lessons learned.

1. Database cracking is a mature field of research.
Database cracking is a simple yet effective technique for
adaptive indexing. In contrast to full indexing, database
cracking is lightweight, i.e. it does not penalize the
first query heavily. Rather, it incrementally performs at
most one quick sort step for each query and nicely dis-
tributes the indexing effort over several queries. More-
over, database cracking indexes only those data regions
which are actually touched by incoming queries. As a re-
sult, database cracking fits perfectly to the modern needs
of adaptive data management. Furthermore, apart from
the incremental index creation in standard cracking, sev-
eral other follow-up works have looked into other as-
pects of adaptive indexing as well. These include updat-

24 Felix Martin Schuhknecht et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

2
58

2
59

2
60

2
61

2
62

Deviation of Normal Distribution with Mean

x

x

x

x

x

x

x

x

263

(a) Skewed Queries

0

1

2

3

4

5

6

7

S
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

2
58

2
59

2
60

2
61

2
62

Deviation of Normal Distribution with Mean

x

x

x

x

x

x

x

x

263

(b) Skewed Input

0

1

2

3

4

5

6

7

4 Cluster 60 ClusterS
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

x

x

x

x

x

x

x

x

(c) Clustered Input
Fig. 23 Impact of skewness variants on the methods for 60 threads. The shown numbers present the speedup over the uniform random dataset
using uniformly distributed query predicates. A number smaller than 1 represents a speedup of the version under skew.

ing a cracked database, convergence of database crack-
ing to a full index, efficient tuple reconstruction, and ro-
bustness over unpredictable changes in query workload.
Thus, we can say that database cracking has come a long
way and is a mature field of research.

2. Database cracking is repeatable. In this paper, we re-
peated eight previous database cracking works, includ-
ing standard cracking using crack-in-two and crack-
in-three [17], predication cracking [23], hybrid crack-
ing [16], sideways cracking [15], and stochastic crack-
ing [11] as well as the whole line of parallel cracking
works [3, 8, 9]. We reimplemented the cracking algo-
rithms from each of these works and tested them un-
der similar settings as in the previous works. Our results
match very closely to the ones presented in the previous
works and we can confirm the findings of those works,
i.e. hybrid cracking indeed improves in terms of conver-
gence to full index, sideways cracking allows for more
efficient tuple reconstruction, and stochastic cracking of-
fers more predictable query performance than standard
cracking. We can say that cracking is repeatable in any
ad-hoc query engine, other than MonetDB as well.

3. Still, lot of potential to improve database cracking.
There is still a lot of potential to do better in several as-
pects of database cracking, including faster convergence
to full index, more efficient tuple reconstruction, and
more robust query performance. For example, by buffer-
ing the elements to be swapped in a heap, we can reduce
the number of swaps and thus have better convergence.
Similarly, by covering the cracked index we can achieve
better scalability in the number of projected attributes.
Likewise, we can trade the initialization time to create a
coarse-granular index which improves query robustness.
All these are promising directions in the database crack-
ing landscape. Thus, we believe that even though crack-
ing has come a long way, it still has a lot more to go.

4. Database cracking depends heavily on the query ac-
cess pattern. As the presented techniques are adaptive
due to their query driven character, each of them is more
of less sensitive to the applied query access pattern. A
uniform random access pattern can be considered the

best case for all methods as it leads to uniform parti-
tion sizes across the data. In contrast to that sequen-
tial patterns crack the index in small steps and the al-
gorithms have to rescan large parts of the data. Skewed
access patterns lead to a high variance in runtime de-
pending on whether the query predicate hits the hotspot
area or not. Overall, stochastic cracking (MDD1R) and
coarse-granular index, which extend their query driven
character by data driven influences, are less sensitive to
the query access pattern than the methods that take only
the seen queries into account.

5. Workload selectivities affect the amount of indexing
effort in database cracking. Since cracking reorganizes
only the accessed portions of the data, the total indexing
effort varies with the query selectivities. In fact, the to-
tal indexing effort in standard cracking drops by 45%

when the selectivity changes from 10−5 to 10−1. Al-
though high selectivity queries reorganize smaller por-
tions of the data, the reorganization happens much more
often before reaching the final state. Additionally, earlier
cracking works suggested to stop data reorganization at
a certain partition size, in order to reduce the indexing
effort. However, we saw that the overhead of additional
filtering eclipses the savings from indexing effort.

6. Database cracking needs to catch up with modern in-
dexing trends. We saw that for sorting radix sort is twice
as fast as quick sort. After 600 queries the total query re-
sponse time of binary search based on radix sorted data
is even faster than standard cracking. This means that a
full sorting pays-off over standard cracking in less than
1000 queries. Thus, we need to explore more lightweight
techniques for database cracking to be competitive with
radix sort. Furthermore, several recent works have pro-
posed main-memory optimized index structures. The re-
cently proposed ART has 1.8 times faster lookups than
standard cracking after 1000 queries and 3.6 times faster
lookups than standard cracking after 1M queries. We
note two things here: (i) the cracker index offers much
slower lookups than modern main-memory indexes, and
(ii) the cracker index gets even worse as the number of
queries increase. Thus, we need to look into the index

An Experimental Evaluation and Analysis of Database Cracking 25

structures used in database cracking and catch up with
modern indexing trends.

7. Database cracking needs to improve mapping to par-
allel hardware. We inspected several different parallel
cracking algorithms that use either inter- or intra-query
parallelism and compared them in terms of scaling with
available hardware resources and absolute runtimes with
sort-based approaches. We identified lock contention
and the shared memory bus as main limitations for par-
allel cracking algorithms. In terms of absolute query re-
sponse times, the sorting methods are a hard match for
their cracking based competitors and offer nice addi-
tional properties like interesting orders — however, only
if a large number of threads is available. This picture is
confirmed in the tuple reconstruction case, where paral-
lel sideways cracking is the winner over parallel clus-
tering only under limited computing resources. Skew af-
fects the parallel algorithms at different degrees depend-
ing on its type: a higher skewness is preferred by most
algorithms although e.g. clustered input heavily throttles
certain methods in their current realizations.

8. Different indexing methods have different signatures.
We looked at several indexing techniques in this pa-
per. Let us now contrast the indexing behavior of dif-
ferent indexing methods in a nutshell. To do so, we in-
troduce a way to fingerprint different indexing meth-
ods. We measure the progress of index creation over the
progress of query processing, i.e. how different index-
ing methods index the data over time as the queries are
being processed (Figure 24). This measure essentially
acts as a signature of different indexing methods. The x-
axis shows the normalized accumulated lookup and data
access time (querying progress) and the y-axis shows
the normalized accumulated data shuffle and index up-
date time (indexing progress). We can see that differ-
ent indexing methods have different curves. For exam-
ple, standard cracking gradually builds the index as the
queries are processed whereas full index builds the en-
tire index before processing any queries. Hybrid crack
sort and hybrid sort sort have steeper curves than stan-
dard cracking, indicating that they build the index more
quickly. On the other hand, stochastic cracking has a
much smoother curve. Sideways and covered cracking
perform large parts of their querying process already in
the first query by copying table columns into the index
to speed up tuple reconstruction. It is interesting to see
that each method has a unique curve which characterizes
its indexing behavior. Furthermore, there is still lot more
room to design adaptive indexing algorithms with even
more different indexing signatures.

Acknowledgements Special thanks to Stratos Idreos for helping us
understanding the hybrid methods. Work partially supported by BMBF.

0
0.2
0.4
0.6
0.8

1

Standard Cracking Scan
Quick Sort

+ Binary Search Hybrid Crack Sort Hybrid Sort Sort

0
0.2
0.4
0.6
0.8

1

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Stochastic Cracking

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Coarse-granular
Index 1K

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Buffered Swapping
10|990

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Sideways Cracking
(# Proj. Attributes: 5)

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Covered Cracking
(# Proj. Attributes: 5)

Querying Progress

In
de

xi
ng

 P
ro

gr
es

s

Fig. 24 Signatures of Indexing Methods.

References

1. Generalized Heap Impl. https://github.com/valyala/gheap
2. Adelson-Velsky, G., et al.: An algorithm for the organization of

information. In: USSR Academy of Sciences, pp. 263–266 (1962)
3. Alvarez, V., Schuhknecht, F.M., Dittrich, J., Richter, S.: Main

memory adaptive indexing for multi-core systems. In: DaMoN,
Snowbird, UT, USA, pp. 3:1–3:10 (2014)

4. Bayer, R., McCreight, E.M.: Organization and maintenance of
large ordered indices. Acta Inf. 1, 173–189 (1972)

5. Birkeland, O.R.: Searching Large Data Volumes with MISD Pro-
cessing. Ph.D. thesis (2008)

6. DeWitt, D.J., Naughton, J.F., et al.: Practical skew handling in par-
allel joins. In: VLDB, 1992, Proceedings., pp. 27–40

7. Finch, T.: Incremental calculation of weighted mean and variance.
University of Cambridge Computing Service (2009)

8. Graefe, G., Halim, F., Idreos, S., et al.: Concurrency Control for
Adaptive Indexing. In: PVLDB, vol. 5, pp. 656–667 (2012)

9. Graefe, G., Halim, F., Idreos, S., et al.: Transactional support for
adaptive indexing. VLDB J. 23(2), 303–328 (2014)

10. Graefe, G., Kuno, H.: Self-selecting, Self-tuning, Incrementally
Optimized Indexes. In: EDBT, pp. 371–381 (2010)

11. Halim, F., Idreos, S., et al.: Stochastic Database Cracking: To-
wards Robust Adaptive Indexing in Main-Memory Column-
Stores. In: PVLDB, vol. 5, pp. 502–513 (2012)

12. Hildebrandt, P., Isbitz, H.: Radix Exchange - An Internal Sorting
Method for Digital Computers. J. ACM (1959)

13. Hoare, C.A.R.: Quicksort. Commun. ACM 4(7), 321– (1961)
14. Idreos, S., Kersten, M., Manegold, S.: Updating a Cracked

Database. In: SIGMOD, pp. 413–424 (2007)
15. Idreos, S., Kersten, M., Manegold, S.: Self-organizing Tuple Re-

construction In Column-stores. In: SIGMOD, pp. 297–308 (2009)
16. Idreos, S., Manegold, S., et al.: Merging What’s Cracked, Crack-

ing What’s Merged. In: PVLDB, vol. 4, pp. 586–597 (2011)
17. Idreos, S., et al.: Database Cracking. In: CIDR, pp. 68–78 (2007)
18. Kersten, M., et al.: Cracking the Database Store. In: CIDR, pp.

213–224 (2005)
19. Kim, C., et al.: FAST: Fast Architecture Sensitive Tree Search on

Modern CPUs and GPUs. In: SIGMOD, pp. 339–350 (2010)
20. Leis, V., et al.: The Adaptive Radix Tree: ARTful Indexing for

Main-Memory Databases. In: ICDE, pp. 38–49 (2013)
21. Martinez-Palau, X., Dominguez-Sal, D., et al.: Two-way Replace-

ment Selection. In: PVLDB, vol. 3, pp. 871–881 (2010)
22. McCalpin, J.D.: STREAM benchmark, version from January 17,

2013. https://www.cs.virginia.edu/stream/FTP/Code/stream.c
23. Pirk, H., Petraki, E., Idreos, S., Manegold, S., Kersten, M.L.:

Database cracking: fancy scan, not poor man’s sort! In: DaMoN,
Snowbird, UT, USA, pp. 4:1–4:8 (2014)

24. Rao, J., Ross, K.A.: Making B+-Trees Cache Conscious in Main
Memory. In: SIGMOD, pp. 475–486 (2000)

25. Schuhknecht, F.M., Jindal, A., Dittrich, J.: The Uncracked Pieces
in Database Cracking. In: PVLDB, vol. 7, pp. 97–108 (2013)

26. Schuhknecht, F.M., Khanchandani, P., Dittrich, J.: On the surpris-
ing difficulty of simple things: the case of radix partitioning. In:
PVLDB, vol. 8, pp. 934–937 (2015)

